首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Maryland Coastal Bays differ in hydrography from river-dominated estuaries because of limited freshwater inflow from tributary creeks and more marine influence. Consequently, the copepod community structure may be different from that of the coastal ocean and river-dominated estuaries in the mid-Atlantic region. A 2-year study was conducted to describe copepod species composition and seasonal patterns in abundance and factors influencing the community structure. Seven copepod genera, Acartia, Centropages, Pseudodiaptomus, Parvocalanus, Eurytemora, Oithona, and Temora, in addition to harpacticoids were found. The copepod community was dominated by Acartia spp. (64%), followed by Centropages spp. (30%), unlike in river-dominated estuaries in the region where the copepod community is usually dominated by Acartia spp. followed by Eurytemora affinis. Acartia tonsa was the most abundant in summer and fall whereas Centropages spp., Temora sp., Oithona similis, E. affinis, and harpacticoids were most abundant in winter and early spring. Parvocalanus crassirostris and Pseudodiaptomus pelagicus were present in fall and winter but at relatively low densities. The highest mean density of copepods occurred in winter 2012 (36,437 m?3) and the lowest in spring 2013 (347 m?3). Low densities occurred through early summer (614 m?3) coinciding with peak spawning by bay anchovy (Anchoa mitchilli). Bottom-up control via low phytoplankton biomass coupled with top-down control by ctenophores (Mnemiopsis sp.), mysids (Neomysis americana), and bay anchovy was probably responsible for the low copepod densities in spring and early summer. Temperature and salinity were also important factors that influenced the seasonal patterns of copepod species occurrence. The observed seasonal differences in the abundance of copepods have important implications for planktivorous fishes as they may experience lower growth rates and survival due to food limitation in spring/early summer when copepod densities are relatively low than in late summer/fall when copepod abundance is higher.  相似文献   

2.
The lower Neuse River Estuary is a temperate mesohaline system which forms the major southern tributary of Pamlico Sound, North Carolina. The crustacean zooplankton of this well-mixed system were sampled for a 20-month period from May 1988 through December 1989. A submersible pump was used to sample both the entire water column and the sediment surface. Seasonal dominants included the calanoid copepodsAcartia tonsa andParacalanus crassirostris in summer, the cyclopoid copepodOithona colcarva in fall, the cladoceranPodon polyphemoides in winter, and harpacticoid copepods in spring. Non-naupliar biomass over the study period consisted of 38.8%A. tonsa, 7.7%P. crassirostris, 21.2%O. colcarva 23.6% harpacticoid copepods, and 6.0% cladocerans. The remainder of the biomass consisted ofPseudodiaptomus coronatus and barnacle nauplii. Mean total copepod densities ranged from 600 m?3 in May 1988 to 180,000 m?3 in August 1988. Mean copepod densities for 1989 were 25,000 m?3. Maximum densities during both years occurred during summer, with subsequent descreases throughtout the year until early spring. Abundances of total copepods, and ofAcartia tonsa in particular, were significantly correlated with water temperature, but with neither chlorophylla, phytoplankton productivity, nor any of an array of other physical or chemical variables. Regression analyses using data from this investigation, and supported by results from other regional studies, indicate that water temperature is likely the single most important variable predicting zooplankton temporal abundance in North Carolina estuaries.  相似文献   

3.
A benthic annular flume for both laboratory and in situ deployment on intertidal mudflats is described. The flume provides a means of quantifying material flux (i.e., biodeposition of suspended particulates, sediment resuspension, nutrients, oxygen, and contaminants) across the sediment-water interface in relation to changes in current velocity and benthic community structure and/or population density of key macrofauna species. Flume experiments have investigated the impact of the infaunal bivalveMacoma balthica and the epifaunal bivalveMytilus edulis on seston and sediment flux at the sediment-water interface. The bioturbatorMacoma was found to increase the sediment resuspension and/or erodability by 4-fold, at densities similar to those recorded at the Skeffling mudflat (Humber estuary) (i.e., >1000 individuals m?2). There was a significant correlation between sediment resuspension andMacoma density (r=0.99; p<0.001), which supported previous in situ field observations indicating bioturbation byMacoma enhanced sediment erodability. Biodeposition rates (g m?2 h1) ofMytilus edulis andCerastoderma edule were quantified and related to changes in population density in a mussel bed (Cleethorpes, Humber estuary). Biodeposition rates were up to 40-times the natural sedimentation rates. At the highest mussel bed densities (i.e., 50–100% cover or >1400 mussels m?2) the physical presence of this epifaunal bivalve on the sediment surface reduced erosion by 10-fold. The shift from net biodeposition to net erosion occurred at current velocities of 20–25 cm s?1. These results demonstrate that infaunal and epifaunal bivalves can have a significant impact on seston flux or sediment deposition and on sediment resuspension or erodability in estuaries where there are extensive mudflats.  相似文献   

4.
Striped bass,Morone saxatilis, larvae of 9 DAH (days after hatching) were fed for 16 d with five densities of adults (5–100 l?1), copepodites (10–200 l?1), and nauplii (50–1,000?1) of the copepodEurytemora affinis, and 5-DAH and 10-DAH larvae were fed at seven densities (5–500 l?1) of brine shrimp,Artemia salina, nauplii. The study determined the effects of prey types and densities on the survival and growth of the fish larvae, and the effects of delaying first feeding from 5 DAH to 10 DAH. The survival and grwoth of the larvae fedE. affinis adults was higher than those fedE. affinis copepodites.E. affinis nauplii were the poorest prey. OneE. affinis adult provided nutrition equivalent to 1.45 copepoditer or 11.12 nauplii. The percentage survival of the larvae was higher for those fedA. salina nauplii thanE. affinis adults at the densities below 67.25 l?1, but there was no difference at this density or higher. Delaying first feeding from 5 DAH to 10 DAH did not affect percentage survival and size of larvae at the end of the experiments. Because the survival and growth of the larvae increased as the prey density increased, it was difficult to set a point along the regression line as the minimum density requirement level. It may be said that for striped bass larvae, the higher the prey density, the higher the survival and growth, and thus the greater the recruitment success.  相似文献   

5.
The scyphomedusa, Chrysaora quinquecirrha, preys on a variety of estuarine organisms. A series of experiments were conducted to measure the feeding rate of adult medusae on zooplankton prey. Artemia was used as a substitute for the endemic and abundant copepod, Acartia tonsa. The feeding rates ranged from three Artemia per hour per ml of medusae volume to 107 per hour per ml in 51 trials. The consumption was also linearly related to the initial prey concentration. Certain results suggested that a toxic factor might be exuded by the medusae, affecting the observed feeding rates. The results verify the possibility that Acartia may be a major prey organism in estuarine environments.  相似文献   

6.
Zooplankton abundance and distribution patterns were determined for six seasonally important invertebrate taxa (bivalve veligers, gastropod veligers, polychaete larvae, barnacle nauplii, calanoid copepod adults and nauplii) and a diurnally important taxon (decapod zoea) around a restored oyster reef in the Piankatank River, Virginia. Data were collected on spatial scales of hundreds of meters and seasonal (May through October), diel (day-night), and tidal (3 h) temporal scales. Significant seasonal and diel patterns in abundance were observed for all taxa. Tidal influences alone appear to be less important than seasonal and diel patterns for most taxa but the interation of tidal and diel cues may have caused the observed diel zooplankton distribution patterns in both June and August 1996. Zooplankton taxa around the oyster reef were distributed non-randomly (patchily) regardless of their horizontal location with regard to the reef. Seasonal pulses in zooplankton abundance relate directly to life history patterns and reproductive cycles for individual taxa. Reef benthic fauna have the capacity to directly influence the composition and absolute abundance of the overlying zooplankton community and indirectly influence oyster reef community trophic dynamics.  相似文献   

7.
Seasonality and abundance of ichthyoplankton in great South Bay,New York   总被引:1,自引:0,他引:1  
The seasonality and abundance patterns of ichthyoplankton were investigated during 1985–1986 in Great South Bay, New York, USA. Eggs representing 17 species and larvae representing 23 species of fish were identified. Bay anchovy, Anchoa mitchilli, was the most abundant ichthyoplankter, comprising >96% of the eggs and >69% of the larvae collected. Bay anchovy spawned throughout the bay from late May through August, with peak baywide densities of >200 eggs and 6 larvae m?3. Eggs of windowpane flounder (Scophthalmus aquosus) ranked second in abundance and were present in both spring and fall. Other dominant larvae were winter flounder (Pleuronectes americanus) and American sand lance (Ammodytes americanus). Their combined density reached 8 m?3 and accounted for the winter peak in larvae. The seasonality of abundance of larval fish was strongly correlated with reported densities of copepod nauplii prey.  相似文献   

8.
The impact of mesozooplankton (>210 μm, mostly adult copepods and late-stage copepodites) and micrometazoa (64–210 μm, mostly copepod nauplii) on phytoplankton size structure and biomass in the lower Hudson River estuary was investigated using various14C-labeled algal species as tracers of grazing on natural phytoplankton. During spring and summer, zooplankton grazing pressure, defined as %=mg C ingested m?2 h?1/mg C produced m?2 h?1 (depth-integrated rates)×100, on total phytoplankton ranged between 0.04% and 1.9% for mesozooplankton and 0.1% and 6.6% for micrometazoa. The greatest grazing impact was measured in fall when 20.2% and 44.6%, respectively, of the total depth-integrated primary production from surface water phytoplankton was grazed. Mesozooplankton exhibited some size-selective grazing on phytoplankton, preferentially grazing the diatomThalassiosira pseudonana over the larger diatomDitylum brightwelli, but this was not found for micrometazoa. Neither zooplankton group grazed on the dinoflagellateAmphidinium sp. We conclude that metazoan zooplankton have a minimal role in controlling total phytoplankton biomass in the lower Hudson River estuary. Differences in the growth coefficients of various phytoplankton size-fractions—not grazing selectivity—may be the predominant factor explaining community size-structure.  相似文献   

9.
The biomass of phytoplankton, microzooplankton, copepods, and gelatinous zooplankton were measured in two tributaries of the Chesapeake Bay during the springs of consecutive dry (below average freshwater flow), wet (above average freshwater flow), and average freshwater flow years. The potential for copepod control of microzooplankton biomass in the dry and wet years was evaluated by comparing the estimated grazing rates of microzooplankton by the dominant copepod species (Acartia spp. andEurytemora affinis) to microzooplankton growth rates and by calculating the percent of daily microzooplanton standing stock removed through copepod grazing. There were significant increases in phytoplankton and copepod biomass, but not for microzooplankton biomass in the wet year as compared to the dry year. The ctenophoreMnemiopsis leidyi was present during the dry year but was absent during the sampling period of the wet and average freshwater flow years. Grazing pressure on microzooplankton was greatest in the wet year, withAcartia spp. andE. affinis ingesting 0.21–2.64 μg of microzooplankton C copepod−1 d−1 and removing up to 60% of the microzooplankton standing stock per day. In the dry year, these copepod species ingested 0.10–0.73 μg of microzooplankton C copepod−1 d−1 with a maximum daily removal of approximately 3% of the microzooplankton standing stock. Potential copepod grazing pressure was significantly less than microzooplankton growth in the dry year, but was equivalent to microzooplankton growth in the wet year, implying strong top-down control of the microzooplankton community in the wet year. These results suggest that increased grazing control of microzooplankton populations by more copepods in the wet year released top-down control of phytoplankton. Reduced microzooplankton grazing, in conjunction with increased nutrient availability, resulted in large increases in phytoplankton biomass in the wet year. Increased freshwater flow has the potential to influence trophic cascades and the partitioning of plankton production in estuarine systems.  相似文献   

10.
During summer, bloom-forming cyanobacteria, including Anacystis, Aphanizomenon, and Microcystis aeruginosa, dominate tidal-fresh waters of the upper Potomac River estuary with densities exceeding 108 cells l?1. In an attempt to determine the importance of these high cyanobacteria densities to planktonic herbivory in the system, short-term grazing experiments were conducted in July and August 1987. Using size-fractionated river phytoplankton assemblages, zooplankton grazing rates were determined for dominant or subdominant planktonic microzooplankton and mesozooplankton feeding on 14C-labeled river assemblages, 14C-labeled river assemblages enriched with unlabeled cyanobacteria, and unlabeled river assemblages enriched with 14C-labeled cyanobacteria. Grazing rates were estimated for the rotifers Polyarthra remata, Hexarthra mira, Asplanchna brightwelli, Brachionus angularis, Epiphanes sp., Trichocerca similis, and the cyclopoid copepod Cyclops vernalis. Neither rotifers nor the copepod grazed heavily on Microcystis. Rotifer grazing rates on labeled cyanobacteria ranged from 4 to 1,650 nl· [individual · h]?1 while copepod rates ranged from undetectable to 135 μl · [copepod · h]?1. Grazing rates on labeled river phytoplankton assemblages were 4–100 times higher than noted for zooplankton feeding on cyanobacteria. The addition of the colonial alga to labeled river phytoplankton assemblages resulted in mixed zooplankton responses, that is, lower and higher grazing rates than observed on river assemblages with no added cyanobacteria. Total zooplankton demand for cyanobacteria and river phytoplankton assemblages was estimated for the study period July–August 1987. Rotifer plus C. vernalis herbivory would have removed 1–5% and 49%, respectively, of the standing stock of the two autotroph pools each day. Literature-derived clearance rates for Bosmina indicate, however, that herbivory by this cladoceran could increase demand to 24% and 60%, respectively, in bloom and nonbloom assemblages. These data suggest that the majority of cyanobacterial production remains ungrazed and may be transported to the lower estuary for salinity-induced aggregation and sedimentation.  相似文献   

11.
An enclosure experiment in the Patos Lagoon estuary, southern Brazil (32°S, 52°W) investigated the response of phytoplankton to the enhancement of mesozooplankton and fish abundance. Addition of nutrients (NO3 ? and PO4 ?) stimulated the growth of 3–20 μm diameter phytoplankton, especially the diatomCylindrotheca closterium, which, in turn, was heavily grazed by the dominant mesozooplankter, the copepodAcartia tonsa. Acartia did not consume small (2–3 μm) autotrophic flagellates and the cyanobacteriaAnabaena sp., despite their high cell number. Largest grazing ofC. closterium by the copepod occurred only after a decrease of ciliate abundance. The addition of mesozooplankton did not change the levels of primary production, but it significantly increased the phytoplankton assimilation number. Highest chlorophylla concentrations were measured in enclosures stocked with juveniles of the fishXenomelaniris brasiliensis. The large phytoplankton biomass and low mesozooplankton abundance found in this treatment indicates an, effective predator-mediated action on the phytoplankton community.  相似文献   

12.
Phytoplankton chlorophyll a concentration, biovolume, cell diameter, and species composition differed across the narrow, low salinity zone between 0.6‰ to 4‰ and may influence copepod food availability in the northern San Francisco Bay Estuary. The highest chlorophyll a concentrations (range 3.2–12.3 μg 1?1), widest cell diameters (>5 μm diam), highest diatom densities and highest production rates of >10 μm diam cells occurred at the landward edge of the salinity zone in April during a strong spring tide and May during a strong neap tide. Near optimum predator/prey ratios, large prey estimated spherical diameters, and high chlorophyll a concentrations suggest these phytoplankton communities provided good food quantity and quality for the most abundant copepods, Eurytemora affinis, Sinocalanus doerrii, and Pseudodiaptomus forbesi. At the center of the zone, chlorophyll a concentrations, diatom densities, and production rates of >10 μm diam cells were lower and cell diameters were smaller than upstream. Downstream transport was accompanied by accumulation of phytoplankton with depth and tide; maximum biomass occurred on spring tide. The lowest chlorophyll a concentrations (1.4–3.6 μg 1?) and consistently high densities (3,000–4,000 cells ml?1) of <5 μm diam cells occurred at the seaward edge of the zone, where the green alga Nannochloris spp. and the bluegreen alga Synechococcus spp. were the most abundant phytoplankton. Low chlorophyll a concentrations and production rates of >10 μm diam cells, small prey estimated spherical diameters, and high predator/prey ratios suggested the seaward edge of the zone had poor phytoplankton food for copepodids and adult copepods. The seaward decrease in phytoplankton chlorophyll a concentration and cell diameter and shift in species composition in the low salinity zone were probably a function of an estuary-wide decrease in chlorophyll a concentration, cell diameter, and diatom density since the early 1980s that was enhanced in the low salinity zone by clam herbivory after 1987. *** DIRECT SUPPORT *** A01BY090 00008  相似文献   

13.
The objective of this study was to determine the influence of a range of salinities (5%., 15%., and 25%.) on the acute toxicity of atrazine to nauplii of the copepodEurytemora affinis and larvae of the sheepshead minnow,Cyprinodon variegatus. Ninety-six-hour LC50 values for the copepod were 0.5 mg 1?1, 2.6 mg 1?1, and 13.2 mg 1?1 at salimities of 5%., 15%. and 25%. respectively. A comparison of LC50 values between adjacent salinities showed a statistical difference between 15%. and 25%. but not between 5%. and 15%.. Atrazine was more toxic toE. affinis at the lowest salinity. The 96-h LC50s for the sheepshead minnow were 16.2 mg 1?1, 2.3 mg 1?1, and 2.0 mg 1?1 at salinities of 5%., 15%., and 25%., respectively. There was a statistical difference between LC50 values at 5%. and 15%. but not between 15%. and 25%.. In contrast toE. affinis results, atrazine was more toxic toC. variegatus at the highest salinity. The toxicity data from these species suggest that development of estuarine water quality criteria is warranted.  相似文献   

14.
Zooplankton and chlorophyll-a samples and associated hydrographic data were collected at approximately weekly intervals in the Peconic Bay estuary for most of the period between May 1978 and June 1979. Surface zooplankton samples were obtained by simultaneously-towed 73 μm- and 202 μm-mesh nets, and subsurface samples were collected with 505 μm-mesh nets. Zooplankton numbers and displacement volumes fluctuated widely throughout the year, with highest values in early spring and summer. Juvenile or adult copepods accounted for means of 90.0% and 85.0% of the animals recorded for the 202 μm- and 73 μm-net samples, respectively. The combination of Acartia tonsa and A. hudsonica adults+copepodids accounted for a mean of 81.4% of the zooplankton recorded for the 202 μm-net samples, and the combination of copepod nauplii, Acartia spp. adults+copepodids, Oithona colcarva and Parvocalanus crassirostris accounted for a mean of 82.7% of the animals recorded for the 73 μm-net samples. Copepod nauplii were the most abundant zooplankters collected in the 73 μm-net samples, and they were generally collected in higher numbers than the total number of animals in the 202 μm-net samples. During the colder months, late copepodids and adults of larger copepod species comprised greater proportions of the total zooplankton than during the warmer months when nauplii and copepodids of smaller copepod species were predominant. The ctenophore Mnemiopsis leidyi and the medusa Cyanea capillata also had periods of abundance during warmer months. Differences between numbers of larger zooplankters collected over different depth intervals or in successive replicate tows over the same depth intervals, reveal the likely effects of both vertical and horizontal patchiness. Comparisons of zooplankton numbers from the present investigation, which were obtained with relatively fine-mesh nets, with values from previous studies in adjacent waters which used coarser-mesh nets, suggest that many previous investigations have seriously underestimated the numbers of smaller zooplankters, particularly copepod nauplii.  相似文献   

15.
Experiments in 2.2 m3, in situ mesocosm enclosures indicate that black drum, Pogonias cromis, eggs and larvae potentially can survive in the lower Chesapeake Bay at ambient microzooplankton prey levels (≈200 prey 1?1) in the absence of predators. In growth experiments, larva mean growth rates to 10 d posthatch were similar (0.17 mm d?1 and 0.18 mm d?1) when fed at prey levels of 50 prey 1?1 and 200 prey 1?1. Individual growth rates, however, were more variable at 50 prey 1?1. Mortality rates also were comparable in 50 (27% d?1) and 200 (23% d?1) prey 1?1 enclosures. In a second experiment, the predation potentials of the hydromedusa Nemopsis bachei and the lobate ctenophore Mnemiopsis leidyi were estimated in relation to initial black drum egg prey density, presence of alternative <1 mm zooplankton prey, and estimated daily abundance of the jellyfish on the black drum spawning grounds. Mortality rates per medusa and ctenophore were similar (0.02–0.03 d?1), were not affected by presence of alternative prey, and were directly related to initial egg density. Results suggest that the gelatinous predators, especially the hydromedusa, could have cleared a high (≈38%) but variable fraction of the water column daily of fish eggs and yolk-sac larvae during the black drum spawning season. We hypothesize that the poor or episodic recruitment success of black drum in Chesapeake Bay results from a short spawning season that often coincides with abundance peaks of gelatinous predators and that predation on eggs and yolk-sac larvae may control recruitment.  相似文献   

16.
Distribution, abundance, and community structure were studied over a 30 month period in the planktonic copepod community of the estuaries near Beaufort, North Carolina. Many of the copepod species showed a demersal distribution during the day and entered the surface waters at night. Several species were largely confined to vegetated littoral areas during the day. The copepod community showed consistent trends of seasonal abundance and succession of dominant species which differed greatly from those found by previous workers, whose methods were inadequate to sample quantitatively the small, demersal copepods which dominated the community. Copepod abundances were higher than found in previous studies and were correlated with water temperature. Species composition changed from a winter community dominated byCentropages spp., to a spring community dominated byAcartia tonsa, to a summer community jointly dominated byParacalanus crassirostris andOithona spp. Copepods were much more important grazers in these estuaries than previous studies had concluded.  相似文献   

17.
Mean daily consumption rates on Mytilus spp. were compared among juveniles of the non-indigenous Carcinus maenas, juveniles of the indigenous Cancer irroratus, and adults of the indigenous Dyspanopeus sayi between June and August 2005 to assess the relative impact of juvenile C. maenas in field (Benacadie Channel (45°54′ N, 60°53′ E), Bras d’Or Lakes, Nova Scotia, Canada) and laboratory experiments. This study examined: (1) whether consumption rates in a field setting vary among species; (2) the effect of laboratory and field settings on species-specific consumption rates, and whether rates vary between settings for each species; and (3) the effects of temperature and salinity on the consumption rates of these species. In field experiments, there was no significant difference in consumption among C. maenas, C. irroratus, and D. sayi (0.100?±?0.067, 0.450?±?0.189, and 0.800?±?0.423 mussels crab?1 d?1, respectively). However, both C. maenas and C. irroratus consumed two to four times more prey in the laboratory than in the field. D. sayi prey consumption was also greater (although not significant) in the laboratory than in the field. In the laboratory, consumption rate was greater for C. irroratus in salinities of 26 than 17 (2.75 and 1.69–1.81 mussels crab?1 d?1, respectively), and in 17°C than 13°C (1.10–1.21 and 0.56–0.64 mussels crab?1 d?1, respectively) for C. maenas. In all experiments, consumption rates of juvenile C. maenas were lower than or similar to those of the juvenile and adult indigenous species, suggesting that the potential predatory impact of juvenile C. maenas on Mytilus spp. may not be as significant as that of the adults of this non-indigenous species.  相似文献   

18.
Collections of winter flounder (Pseudopleuronectes americanus) larvae were made biweekly from March to May in 1999 and 2000 in the Navesink River-Sandy Hook Bay estuarine system, New Jersey, to determine stage-specific spatial and temporal variability in diets. Relatively high percentages of larvae with empty guts were found at low water temperatures. Percentages of empty guts did not differ by larval stage (preflexion and postflexion) or region of collection (river and bay). There was high intraregional variability in percentages of larvae with empty guts. Nauplii, invertebrate eggs, and polychaete larvae were dominant prey items followed by tintinnids, bivalve and gastropod veligers, and diatoms. Ontogenetic dietary shifts were evident in both years. Preflexion winter flounder largely consumed nauplii, invertebrate eggs, and tintinnids; postflexion winter flounder consumed the largest prey (polychaete larvae) but also retained small prey items in their diets. Water temperature significantly affected the percentages of larvae feeding on nauplii (p<0.05) and tintinnids (p<0.08) in 2000. Region of collection was not significantly related to diets because of high intraregional variability. Fine scale spatial (within regions, stations were approximately 3 km apart) and temporal (weeks) dietary variation of larval winter flounder could result in accompanying variation in development, growth stage duration, and survival.  相似文献   

19.
We investigated trophic relationships involving microzooplankton in the low salinity zone of the San Francisco Estuary (SFE) as part of a larger effort aimed at understanding the dynamics of the food web supporting the endangered delta smelt, Hypomesus transpacificus. We performed 14 cascade experiments in which we manipulated the biomass of a copepod (Limnoithona tetraspina, Pseudodiaptomus forbesi, or Acartiella sinensis) and quantified responses of lower trophic levels including bacterioplankton, phytoplankton, and microzooplankton. Microzooplankton comprised a major food source for copepods; 9 out of 14 experiments showed removal of at least one group of microzooplankton by copepods. In contrast, the impact of copepods on phytoplankton was indirect; increased copepod biomass led to greater growth of phytoplankton in 3 of 14 experiments. Estimated clearance rates on microzooplankton were 4 mL day?1 for L. tetraspina and 2–6 mL day?1 for P. forbesi, whereas A. sinensis consumed mainly copepod nauplii. Complex trophic interactions, including omnivory, among copepods, microzooplankton, and different components of the phytoplankton likely obscured clear trends. The food web of the SFE is probably less efficient than previously thought, providing poor support to higher trophic levels; this inefficient food web is almost certainly implicated in the continuing low abundance of fishes, including the delta smelt that use the low salinity zone of the San Francisco Estuary.  相似文献   

20.
The vertical distribution and feeding type of nematodes in sediments of Chetumal Bay, Mexico, were studied in five intertidal transects along the urbanized zone in June and December 1995. Sediments were collected with a PVC corer to 6-cm sediment depth and cut immediately into three equal 2-cm depth fractions. Nematode density varied from 7.4 × 103 to 5.3 × 105 m?2 in June and from 1.7 × 104 to 7.2 × 105 m?2 in December. In June, the epistrate feederPseudochromadora sp. was the most abundant in the deepest sediment fraction (4–6 cm), whereas epistrate feeders,Neotonchoides sp.,Desmodora sp., and the deposit feederBathylaimus australis were dominant in the top most sediment (0–2 cm). In December, deposit feeders,Desmolaimus zeelandicus, Parodontophora sp., and the epistrate feederOncholaimus oxyuris were the most abundant in the deepest sediment, whereasNeotonchoides sp. andPseudochromadora sp. dominated the first 2 cm of sediments. Highest nematode density was recorded in the uppermost sediment layer (0–2 cm). Feeding types showed different abundance among transects and between months. There was a seasonal change in vertical distribution of nematodes, with the highest abundance in the deepest sediment layer in December, possibly due to the effect of wind waves on sediments of Chetumal Bay. The trophic composition of the nematode fauna in Chetumal Bay showed a dominance of deposit feeders and epistrate feeders, most likely in response to organic enrichment that is typical of eutrophic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号