首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The relationships between egg production (spawning behavior), larval growth and survival, and environmental conditions that larvae encounter were investigated in the Patuxent River tributary of Chesapeake Bay in 1991. Striped, bass (Morone saxatilis) eggs and larvae occurred predominantly above the salt front where conductivity was ≤800 μmhos cm?1. There were three prominent peaks in egg production, each coinciding with increasing temperatures. Estimated growth rates of 6-d, otolith-aged cohorts, which ranged from 0.15 mm d?1 to 0.22 mm d?1 (mean=0.17 mm d?1), were not demonstrated to differ significantly from each other. Observed zooplankton densities and temperature did not significantly affect growth rates. Stage-specific cumulative mortalities of combined cohorts were calculated for eggs (Zstage=0.20=18.1%), yolk-sac larvae (Zstage=5.80=99.7%), and first-feeding larvae (Zstage=2.95=94.8%). The very high mortality of yolk-sac larvae suggests that dynamic during this stage may have had a major impact on subsquent recruitment. Cohort-specific mortality rates of larvae were variable, ranging from Z=0.045 d?1 to 0.719 d?1, and were strongly temperature-dependent. Cohorts that experiented average temperature <15°C or >20°C during the first 25 d after hatching had significantly higher mortality rates than those which experienced intermediate temperatures. Estimated hatch-date frequencies of larvae ≥8 mm SL indicated goo, very good, and very low potential recruitments for cohorst spawned during early-season (April 2–11), mid-season (April 12–24) and late-season (April 25–May 5), respectively. Because seasonal temperature trends and fluctuations are unpredictable, striped bass females cannot select a spawning time that guarantees their offspring will be exposed to optimum temperatures. Consequently, selection may have occured for spawning over a broad range of temperatures and dates, a behavior insuring that some larval cohorts will encounter favorable temperatures.  相似文献   

2.
The effects of acute and chronic exposure to tributyltin (TBT) were examined in bioassays using horseshoe crab (Limulus polyphemus) embryos and “trilobite” larvae. Larvae had>95% survival after 24-h exposure to nominal concentrations of 1–500 μg l?1 TBT. Survival was also high following 48-h and 72-h exposure to ≤100 μg l?1 TBT; >50% mortality was seen only after 48-h and 72-h exposure to 500 μg l?1 TBT. Estimated median lethal concentrations (LC50) were >1000 μg l?1, 742 μg l?1, and 594 μg l?1 for 24-h, 48-h, and 72-h exposure, respectively. Much higher toxicity LC50=42 μg l?1) was seen following chronic exposure of larvae to TBT. Acute exposure to TBT significantly increased the time required by larvae to molt into the first-tailed stage. LC50 for horseshoe crab embryos exposed to TBT were 44 μg l?1, 20 μg l?1, and 14 μg l?1 for 24, 48, and 72 h acute exposure, indicating that this earlier developmental stage was about 30–40 fold more susceptible to TBT than larvae. Horseshoe crabs are highly tolerant of TBT in comparison to early developmental stages of other marine arthropods. The ability of horseshoe crab embryos and larvae to survive in the presence of organotin pollution suggests the possibility of bioaccumulation and movement into the estuarine food chain via shorebirds, gulls, and fish.  相似文献   

3.
Experiments in 2.2 m3, in situ mesocosm enclosures indicate that black drum, Pogonias cromis, eggs and larvae potentially can survive in the lower Chesapeake Bay at ambient microzooplankton prey levels (≈200 prey 1?1) in the absence of predators. In growth experiments, larva mean growth rates to 10 d posthatch were similar (0.17 mm d?1 and 0.18 mm d?1) when fed at prey levels of 50 prey 1?1 and 200 prey 1?1. Individual growth rates, however, were more variable at 50 prey 1?1. Mortality rates also were comparable in 50 (27% d?1) and 200 (23% d?1) prey 1?1 enclosures. In a second experiment, the predation potentials of the hydromedusa Nemopsis bachei and the lobate ctenophore Mnemiopsis leidyi were estimated in relation to initial black drum egg prey density, presence of alternative <1 mm zooplankton prey, and estimated daily abundance of the jellyfish on the black drum spawning grounds. Mortality rates per medusa and ctenophore were similar (0.02–0.03 d?1), were not affected by presence of alternative prey, and were directly related to initial egg density. Results suggest that the gelatinous predators, especially the hydromedusa, could have cleared a high (≈38%) but variable fraction of the water column daily of fish eggs and yolk-sac larvae during the black drum spawning season. We hypothesize that the poor or episodic recruitment success of black drum in Chesapeake Bay results from a short spawning season that often coincides with abundance peaks of gelatinous predators and that predation on eggs and yolk-sac larvae may control recruitment.  相似文献   

4.
During the 1992 spawning season of river herring, three sites in a tributary of the Rappahannock River, Virginia, were studied to characterize spawning and nursery habitats of alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis) and to identify differences in habitat use along an upstream to downtream gradient. The sites were sampled (using drift and dip nets and a plankton sampler) and habitat variables were measured on a 5-d, four-time interval rotation: at the end of 5 d, each site had been sampled once at dawn, noon, dusk, and midnight. Considerable non-overlap in spawning seasonality was apparent between species. For both species, densities of river herring adults, eggs, and yolk-sac larvae were highest at the upstream site, indicating 1) that the upstream site is more important for spawning than downstream areas, and 2) these species do not use different spawning areas in this stream. Densities of post-yolk-sac larvae did not differ significantly among sites, indicating post-spawning dispersal to downstream areas. The upstream site was smaller in area, more acidic, had faster water flow, clearer water, more vegetation, and siltier substrate than the downstream sites. At times, pH levels in the upstream site were within the lethal range reported for blueback herring larvae. Possible reasons for selection of the upstream habitat include: 1) adults may migrate as far upstream as possible to avoid predation or potential competition with other species of fish for spawning habitat; or 2) adults may historically enjoy greater spawning success in the upstream habitat due to physicochemical features of this area. More study is needed to determine the reasons for river herring use of upstream habitats in Virginia streams.  相似文献   

5.
The objective of this study was to determine the influence of a range of salinities (5%., 15%., and 25%.) on the acute toxicity of atrazine to nauplii of the copepodEurytemora affinis and larvae of the sheepshead minnow,Cyprinodon variegatus. Ninety-six-hour LC50 values for the copepod were 0.5 mg 1?1, 2.6 mg 1?1, and 13.2 mg 1?1 at salimities of 5%., 15%. and 25%. respectively. A comparison of LC50 values between adjacent salinities showed a statistical difference between 15%. and 25%. but not between 5%. and 15%.. Atrazine was more toxic toE. affinis at the lowest salinity. The 96-h LC50s for the sheepshead minnow were 16.2 mg 1?1, 2.3 mg 1?1, and 2.0 mg 1?1 at salinities of 5%., 15%., and 25%., respectively. There was a statistical difference between LC50 values at 5%. and 15%. but not between 15%. and 25%.. In contrast toE. affinis results, atrazine was more toxic toC. variegatus at the highest salinity. The toxicity data from these species suggest that development of estuarine water quality criteria is warranted.  相似文献   

6.
Rates of nitrification along an estuarine gradient in Narragansett Bay   总被引:1,自引:0,他引:1  
Rates of pelagic nitrification, measured using N-Serve-sensitive [14C]bicarbonate uptake, varied by as much as an order-of-magnitude among three sites along the salinity gradient of Narragansett Bay (Rhode Island, United States). Rates were always higher at the Providence River estuary site (0.04–11.2 μmol N I?1 d?1) than at either the lower Narragansett Bay site (0.02–0.98 μmol N I?1d?1) or the freshwater Blackstone River site (0.04–1.7 μmol N I?1d?1). Although temperature was the most important variable regulating the annual cycle of nitrification, ammonium concentrations were most likely responsible for the large differences in rates among the three sites in summer. At the levels found in this estuarine system, salinity and concentrations of oxygen or total suspended matter did not appear to have a direct measurable effect on nitrification and pH did only occasionally. Nitrification played an important role in the nitrogen cycle at all three sites. In Narragansett Bay, nitrification contributed 55% of the NO2 ? and NO3 ? entering annually, and was the major source during spring and summer. Water from offshore was the only other large source of NO2 ? and NO3 ?, contributing 34%. High summer rates of nitrification could support much of the phytoplankton uptake of NO2 ? and NO3 ?. In the Providence River estuary, the largest annual input of NO2 ? and NO3 ? was from rivers (54%), although nitrification (28%) and water from lower portions of the bay (11%) also made large contributions. Again, nitrification was most important in the summer. The high rates of nitrification in the Providence River estuary during summer were also likely to be important in terms of oxygen demand, and the production of nitric and nitrous oxides. In the Blackstone River, NO2 ? and NO3 ? concentrations increased as the river flowed through Rhode Island, and nitrification was a possible source.  相似文献   

7.
Sediment trap deployments in estuaries provide a method for estimating the amount of organic material transported to the sediments from the euphotic zone. The amino acid composition of suspended particles, benthic sediment, and sediment-trap material collected at 2.4 m, 5.8 m, and 7.9 m depths in the Potomac Estuary was determined in stratified summer waters, and in well-mixed oxygenated waters (DO) in late fall. The total vertical flow, or flux, of material into the top traps ranged from 3 g m?2 d?1 in August to 4.9 g m?2 d?1 in October. The carbon and nitrogen fluxes increased in the deepest traps relative to the surface traps during both sampling periods, along with that of the total material flux (up to 47.3 g m?2 d?1 in the deepest trap), although the actual weight percent of organic carbon and organic nitrogen decreased with depth. Amino acid concentrations ranged from 129 mg g?1 in surface water particulate material to 22 mg g?1 in particulate material in 9-m-deep waters and in the benthic sediment. Amino acid concentrations from 2.4-mg-depth sediment traps averaged 104±29 mg g?1 in stratified waters and 164±81 mg g?1 in well-mixed waters. The deep trap samples averaed, 77.3±4.8 mg g?1 amino acids in summer waters and 37±16 mg g?1 in oxygenated fall waters. Amino acids comprised 13% to 39% of the organic carbon and 12% to 89% of the orgnaic nitrogen in these samples. Analysis of the flux results suggest that resuspension combined with lateral advection from adjacent slopes can account for up to 27% of the material in the deep traps when the estuary was well-mixed and unstratified. When the estuary was stratified in late summer, the amino acid carbon produced by primary productivity in the euphotic zone decreased by 85% (86% for total organic carbon) at the pycnocline at 6 m depth, leaving up to 15% of the vertical organic flux available for benthic sediment deposition.  相似文献   

8.
A study was carried out in the Madurai district of Tamil Nadu, India to identify the hydrogeochemical processes using factor analysis as a predictive tool. It also focuses on characterizing the samples of these factors with respect to standard geochemical plots. In order to obtain a synoptic view of the statistics and the geochemical processes, a total of 53 groundwater samples are collected representing the entire district. The major ions were analyzed; the order of ion dominance are Ca2+?>?Na+?>?Mg2+?>?K+?=?Cl??>?HCO? 3?>?H4SiO? 4?>?NO? 3?>?SO2? 4?>?P3? 4. The samples are classified according to three factors. Factor 1 shows strong positive loadings of Cl?, Ca2+, Mg2+, and NO? 3 with 36.98 % of the total variance (TV); factor 2 accounts for 13.72 % of TV with high loadings of Na+, K+, and HCO? 3; and factor 3 shows strong positive loadings of PO3? 4 and SO2? 4 with TV of 13.1 %. In the Piper plot, few samples fall in the mix region as evidenced by the mixing proportion of two samples using AQUACHEM software. The results suggest that different hydrogeochemical processes, like weathering, ion exchange processes, and anthropogenic activities (like sewage infiltration and agriculture), has predominant impact in the study area. Thus, the study highlights the factor analysis technique as a predictive and effective tool for groundwater evolution.  相似文献   

9.
Thirty two cores were collected from Lake Geneva sediments along one longitudinal and eight transverse profiles. Rates of sedimentation determined by137Cs vary from 0.01 to 1.86 g cm−2 y−1. The average deposition rates in coastal and slope areas amounts to 0.37 g cm−2 y−1 in the Upper Lake (Grand Lac) and 0.12 g cm−2 y−1 in the Lower Lake (Petit Lac). In the deep basins, average rates of 0.13 and 0.05 g cm−2 y−1 were found for the Grand Lac and Petit Lac, respectively. The estimated mass of sediment deposited yearly outside of the principal deltas and turbidity current depositional areas is about 1.0 million tons (about 13% of the estimated total river load). One turbidite is clearly identified in the deepest, central lake area. There is little variation of surface sediment texture (mean grain size about 8–9μm) with the exception of delta areas. Since the beginning of the twentieth century, both carbonate and organic matter have increased as a result of lake eutrophication.  相似文献   

10.
Rainfall events cause episodic discharges of groundwaters contaminated with septic tank effluent into nearshore waters of the Florida keys, enhancing eutrophication in sensitive coral reef communities. Our study characterized the effects of stormwater discharges by continuously (30-min intervals) measuring salinity, temperature, tidal stage, and dissolved oxygen (DO) along an offshore eutrophication gradient prior to and following heavy rainfall at the beginning of the 1992 rainy season. The gradient included stations at a developed canal system (PP) on Big Pine Key, a seagrass meadow in a tidal channel (PC), a nearshore patch reef (PR), a bank reef at Looe Key National Marine Sanctuary (LK), and a blue water station (BW) approximately 9 km off of Big PIne Key. Water samples were collected at weekly intervals during this period to determine concentrations of total nitrogen (TN), ammonium (NH4 +), nitrate plus nitrite NO3 ? plus NO2 ?), total phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP), and chlorophyll a (chl a). Decreased salinity immediately followed the first major rainfall at Big Pine Key, which was followed by anoxia (DO <0.1 mg I?1), high concentrations of NH4 + (≈24 μM), TDP (≈1.5 μM), and chl a (≈20 μg I?1). Maximum concentration of TDP (≈0.30 μM) also followed the initial rainfall at the PC, PR, and LK stations. In contrast, NH4 + (≈4.0 μM) and chl a (0.45 μg I?1) lagged the rain event by 1–3 wk, depending on distance from shore. The highest and most variable concentrations of NH4 +, TDP, and chl a occurred at PP, and all nutrient parameters correlated positively with rainfall. DO at all stations was positively correlated with tide and salinity and the lowest values occurred during low tide and low salinity (high rainfall) periods. Hypoxia (DO <2.5 mg I?1) was observed at all stations follwing the stormwater discharges, including the offshore bank reef station LK. Our study demonstrated that high frequency (daily) sampling is necessary to track the effects of episodic rainfall events on water quality and that such effects can be detected at considerable distances (12 km) from shore. The low levels of DO and high levels of nutrients and chl a in coastal waters of the Florida Keys demand that special precautions be exercised in the treatment and discharge of wastewaters and land-based runoff in order to preserve sensitive coral reef communities.  相似文献   

11.
Atlantic tomcod larvae, hatching in late February and early March 1975 and 1976 into a regime of accelerating river flows, were moved rapidly downriver from milepoint 42–54 (MP 0 is the estuary mouth) to the most seaward reaches of the estuary. This resulted in a spatiotemporal distribution markedly different from that of other Hudson River fish species. Peak tomcod density on posthatch sampling dates was observed most frequently at the George Washington Bridge station (MP 11). Correlation between movements of the 1.0‰ salt front and movements of the age-0 tomcod population was high (r=0.82); and may have been enhanced by high freshwater flows. The population epicenter was always seaward of the 1.0‰ salt front and mean distance between the two was 16–17 km. Moved by tidal and freshwater flows, the tomcod population oscillated between MP 0 and MP 43 during March–May 1973–1976. Location of the population epicenter after mid march was predicted (r2=0.76) to be seaward of the Tappan Zee Bridge (MP 30) when freshwater flows were greater than 450 m3 s?1. During flow regimes greater than 1,290 m3 s?1, the epicenter was predicted to be seaward of the George Washington Bridge (MP 11). An optimum-allocation sampling design for age-0 tomcod showed that 58% of the total effort from mid March to early June should be directed to the river region between MP 0 and MP 24, a region largely ignored in previous studies. *** DIRECT SUPPORT *** A01BY066 00013  相似文献   

12.
《Geochimica et cosmochimica acta》1999,63(19-20):3487-3497
The solubility of iron(III) hydroxide as a function of pH was investigated in NaCl solutions at different temperatures (5–50°C) and ionic strengths (0–5 M). Our results at 25°C and 0.7 M in the acidic range are similar to the solubility in seawater. The results between 7.5 to 9 are constant (close to 10−11 M) and are lower than those found in seawater (>10−10) in this pH range. The solubility subsequently increases as the pH increases from 9 to 12. The solubility between 6 and 7.5 has a change of slope that cannot be accounted for by changes in the speciation of Fe(III). This effect has been attributed to a solid-state transformation of Fe(OH)3 to FeOOH. The effect of ionic strength from 0.1 to 5 M at a pH near 8 was quite small. The solubility at 5°C is considerably higher than at 25°C at neutral pH range. The effects of temperature and ionic strength on the solubility at low and high pH have been attributed to the effects on the solubility product and the formation of FeOH2+ and Fe(OH)4. The results have been used to determine the solubility products of Fe(OH)3, K1Fe(OH)3 and hydrolysis constants, β11, β12, β13, and β14 as a function of temperature (T, K) and ionic strength (I):log K1Fe(OH)3 = −13.486 − 0.1856 I0.5 + 0.3073 I + 5254/T (σ = 0.08)log β11 = 2.517 − 0.8885 I0.5 + 0.2139 I − 1320/T (σ = 0.03)log β12 = 0.4511 − 0.3305 I0.5 − 1996/T (σ = 0.1)log β13 = −0.2965 − 0.7881 I0.5 − 4086/T (σ = 0.6)log β14 = 4.4466 − 0.8505 I0.5 − 7980/T. (σ = 0.2)Both strong ethylenediaminetetraacetic acid and weak (HA) organic ligands greatly affect iron solubility. The additions of ethylenediaminetetraacetic acid and humic material were shown to increase the solubility near pH 8. The higher solubility of Fe(III) in seawater compared to 0.7 M NaCl may be caused by natural organic ligands.  相似文献   

13.
Apparently anomalous levels of Cu, Pb, Zn (up to 6.1, 26.0 and 10.8 mg 1−1 respectively) and Ra (2000 pg 1−1) have been noted in groundwaters from 28 drill holes within a 20 km × 20 km zone centred about a 10 times background airborne radiometric anomaly near Lake Maurice in the Great Victoria Desert in South Australia. Within 6 km of the anomaly centre the water table depth is generally less than 10 m, increasing to approximately 30 m in the drill holes furthest from the anomaly centre. All waters are very acid (pH 3.6 to 5.8) and deficient in carbonate species (all <0.5 mg 1−1) but saturated with respect to calcium sulphate minerals. XRD traces of drill hole cuttings show the presence of quartz and halite at every sample site, pyrite at 75% of sites, variable amounts of kaolinite and muscovite at all sites, and variable amounts of feldspar, jarosite, calcium sulphate minerals, hydrated iron oxides, siderite, chlorite and calcite at certain locations only. Salinity of waters is very high ranging from that approximating sea water (Ionic strength (I) = 0.93 and Cl = 19 g 1−1) to approximately six times sea water salinity (I = 4.61 and Cl = 120 g 1−1).  相似文献   

14.
The interactions of humic substances from Esthwaite Water with hydrous iron oxides (α-FeOOH, α-Fe2O3, amorphous Fe-gel) have been examined by measuring adsorption isotherms and by microelectrophoresis. In Na+-Cl?-HCO3?at I = 0.002 M (medium I) the extent of adsorption decreases with increasing pH. The results are consistent with a mechanism involving ligand exchange of humic anionic groups with H2O and OH?of surface Fe-OH2+and Fe-OH groups respectively, with an increasing degree of protonation of the adsorbed humics as the adsorption density increases at constant pH.At pH 7 in a medium containing Mg2+, Ca2+ and SO42?, at their Esthwaite Water concentrations and at I= 0.002 M (medium II) the adsorption capacity of goethite (α-FeOOH) is approximately twice that in medium I. Electrophoresis experiments show that the extra capacity is associated with coadsorption of Mg2+ and/or Ca2+ ions.When the iron oxides are added to samples of Esthwaite Water itself they become negatively charged and plots of electrophoretic mobility against pH for the natural water are identical to those in medium II plus humics.  相似文献   

15.
Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21–32 mg C l?1 in O/A horizon leachates, from 5–7 mg C l?1 in B horizon leachates, from 2–4 mg C l?1 in groundwater solutions, from 6–8 mg C l?1 in first order streams, from 3–8 mg C l?1 in lake inlets, and from 2–7 mg C l?1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4–5 μeq mg?1 C at ambient pH, and a total of 6–7 meq COOH per gram carbon.  相似文献   

16.
Enzymatic and alkali pretreatments were employed to improve nickel biosorption capacity of Rhizomucor pusillus biomass. Pretreatment with 0.002–80 g l?1 NaOH and 0.0001–0.1 Anson Unit (AU) g?1 protease enhanced the biosorption capacity of fungal biomass. Increasing the concentration of NaOH from 0.002 to 5 g l?1 improved nickel removal from 93.2 to 100.0 % while untreated biomass showed 64.6 % Ni(II) removal. Pretreatment with higher concentrations of NaOH, 5–80 g l?1 resulted in nearly complete removal of nickel ions. Pretreatment of the biomass with 0.0001 AU g?1 protease improved the nickel removal to over 91 %, while increasing the enzyme loading to 0.1 AU g?1 improved the removal to 93 %. Untreated biomass removed 78.4, 63.0, and 96.3 % of chromium, copper, and lead ions, respectively, from a mixture solution of the ions. Respective metal removals were increased to 100, 98.9, and 100 % after pretreatment with 0.2 g l?1 NaOH solution and to 87.8, 86.7, and 100 % after the enzymatic pretreatment with 0.1 AU g?1 protease. Scanning electron microscopy analysis indicated that alkali and enzymatic pretreatments enhanced the porosity of the biomass. Furthermore, compositional analysis showed that both of the pretreatments removed a major part of fungal proteins (2.1–95.8 % removal). Glucosamine, N-acetyl glucosamine, and phosphates were the major ingredients of the pretreated biomass.  相似文献   

17.
On the basic of selective extractions, loosely sorbed phosphorus (ADS-P) has been shown to constitute much of the total phosphorus in the P-rich near-surface sediments of Lake Søbygaard, Denmark. The concentrations of ADS-P are seasonally variable, ranging from 0.2 mg Pg?1 DW in the winter to more than 2 mg Pg?1 DW in the summer. The variations can be observed as deep as 10 cm into the sediment but are most pronounced in the upper few centimeters. During the summer, lake and pore water pH levels are very high, and photosynthetic activity causes elevation to pH 10–11 in the lake. Laboratory experiments demonstrated a strong association between ADS-P and high pore water pH. It is likely that Lake Søbygaard represents an extreme example of pH control on sediment/water phosphorus equilibria in which high concentrations of internal ADS-P contribute significantly to the total P load of the Lake.  相似文献   

18.
A single-crystal of topaz was studied by Raman spectroscopy to assign the internal modes of the high-frequency range and to compare with infrared data. All active modes exhibit an important Davydov splitting (150 cm?1) but we have found a small Bethe splitting (14.5 cm?1) consistent with a very regular SiO4 tetrahedron. Because of a high value of v 1 (~920 cm?1) the Raman active modes present a mixed v 1/v 3 character. Finally the substitution of OH for F splits an A g internal mode and lead to some proper modes at 3650 cm?1, 3639 cm?1 and 1165 cm?1.  相似文献   

19.
Incidence of high fluoride (F?) in groundwater (>1.5 mg/L) in two tribal belts of eastern India, one around Chukru in the Palamau district of Jharkhand and the other around Karlakot in the Nuapada district of Odisha, has been studied. The maximum concentration of F? in groundwater from dug wells and tube wells is 10.30 mg/L in Chukru and 4.62 mg/L in Karlakot. The groundwaters are mildly alkaline with pH ranges of 7.52–8.22 and 7.33–8.20 in Chukru and Karlakot, respectively. The F? concentration is positively correlated with pH, electrical conductivity and SO4 2? in both areas. The high F? in groundwater resulted mainly from dissolution of biotite and fluorapatite in quartzofeldspathic gneiss. The ionic dominance pattern (in meq/L) is mostly in the order Ca2+ > Na+ > Mg2+ > K+ among cations and HCO3 ? > SO4 2? > < Cl? > F? among anions in the Karlakot groundwater. Preliminary adsorption experiments were conducted on natural haematite iron ore and synthetic magnetite to evaluate their potential for F? removal from water. Effects of different parameters such as contact time, pH, adsorbent dose and initial F? concentration on the adsorption capacity of these materials were investigated. Strong dependence of F? removal on pH was observed for both the adsorbents. With natural haematite iron ore, the maximum F? removal of 66 % occurred at an initial pH of 3.2 for a solution with F? concentration of 3 mg/L, adsorbent dose of 7 g/L and overnight contact time. The haematite iron ore was observed to increase the pH of the F? solution. Adsorption equilibrium was not achieved with this adsorbent even after a contact time of 45.2 h. In the case of synthetic magnetite, 84 % F? removal was achieved after 2 min of contact time for a solution with F? concentration of 6 mg/L, adsorbent dose of 10 g/L and initial pH of 7. The results indicate high potential of both natural haematite iron ore and synthetic magnetite as adsorbents of F? in water.  相似文献   

20.
The impact of mesozooplankton (>210 μm, mostly adult copepods and late-stage copepodites) and micrometazoa (64–210 μm, mostly copepod nauplii) on phytoplankton size structure and biomass in the lower Hudson River estuary was investigated using various14C-labeled algal species as tracers of grazing on natural phytoplankton. During spring and summer, zooplankton grazing pressure, defined as %=mg C ingested m?2 h?1/mg C produced m?2 h?1 (depth-integrated rates)×100, on total phytoplankton ranged between 0.04% and 1.9% for mesozooplankton and 0.1% and 6.6% for micrometazoa. The greatest grazing impact was measured in fall when 20.2% and 44.6%, respectively, of the total depth-integrated primary production from surface water phytoplankton was grazed. Mesozooplankton exhibited some size-selective grazing on phytoplankton, preferentially grazing the diatomThalassiosira pseudonana over the larger diatomDitylum brightwelli, but this was not found for micrometazoa. Neither zooplankton group grazed on the dinoflagellateAmphidinium sp. We conclude that metazoan zooplankton have a minimal role in controlling total phytoplankton biomass in the lower Hudson River estuary. Differences in the growth coefficients of various phytoplankton size-fractions—not grazing selectivity—may be the predominant factor explaining community size-structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号