首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We derive new solutions for the locally rotational-symmetric Bianchi type-V space-time in the Brans-Dicke theory of gravitation. The solutions represent anisotropic cosmological models filled with stiff matter and an electromagnetic null field, including the vacuum case. It is shown that the scalar field is dynamically an essential factor, since it influences the structure of the singularities and the expansion of the models.  相似文献   

2.
We have studied semiclassical models with a classical scalar field, givingexact solutions in the cases of a 4 and an exponentialself-interaction potential, in the last case we have also studied theinfluence of the vacuum polarization terms on the stability of the power-lawsolutions. We have also found cosmological exact solutions to the higherorder gravitational equations derived from a Lagrangian with a R k Rstructure, and investigated the stability of the de Sitter and Minkowskispace-time in the sixth order approximation of this theory.  相似文献   

3.
The dynamics of slowly rotating magneto-viscous fluid universe coupled with zero-mass scalar field is investigated, and the rotational perturbations of such models are studied in order to substantiate the possibility that the Universe is endowed with slow rotation, in the course of presentation of several new analytic solutions. Four different cases are taken up in which the nature and role of the metric rotation (r, t) as well as that of the matter rotation(r,t) are discussed. Except for the case of perfect drag, the scalar field is found to have a damping effect on the rotational motion. This damping effect is seen to be roughly analogous to the viscosity. The periods of physical validity of some of the models are also found out. Most of the rotating models obtained here come out to be expanding ones as well which may be taken as good examples of real astrophysical situations.  相似文献   

4.
Certain new analytic solutions for slowly-rotating charged perfect-fluid universes coupled with zero-mass scalar field are found out to substantiate the possibility of the existence of rotating cosmological objects of such nature and their dynamics is investigated. The nature and role of the metric rotation (r, t) as well as that of the matter rotation (r, t) under different conditions are studied. The effects of the charged field and the scalar field on the rotational motion are also discussed. In some solutions we find out the temporal restrictions on the models for real astrophysical situations. Rotating models which are expanding as well are obtained, in which cases the rotational velocities are found to decay with the time, and these models may be taken as good examples of real astrophysical objects in this Universe.  相似文献   

5.
Certain new analytic solutions for rotating perfect-fluid spheres in the Robertson-Walker universe are found out to substantiate the possibility of the existence of rotating cosmological objects coupled with zero-mass scalar field. Exact solutions for the metric rotation (r, t) and the matter rotation (r, t) under different conditions are obtained and their nature and role are investigated. Except for perfect dragging the scalar field is found to have a damping effect on the rotation of matter. In some solutions we find out the restrictions on the radii of the models for realistic astrophysical situations. Rotating models which can also be expanding are also obtained, in which case the rotational velocities are found to decay with the time; and these models may be taken as examples of real astrophysical objects in the Universe.  相似文献   

6.
Exact Bianchi-type VIII and IX models in the presence of zero-mass scalar fields are presented, when the source of the gravitational field is a perfect fluid withP=. Some physical and geometrical properties of the models are also discussed.  相似文献   

7.
Einstein field equations are considered for zero-curvature Robertson-Walker models in the case of a viscous fluid distribution interacting with zero-rest-mass scalar fields. Exact solutions are obtained for two different phases of the early universe viz. the inflationary phase and the radiation-dominated phase, by using the 'gamma-law' equation of state p = (-1). The index describing the material content varies continuously with cosmological time. The gravitational 'constant' and bulk viscosity are both allowed to depend on the cosmic time. Some physical properties of the cosmological models are also discussed.  相似文献   

8.
In this paper we study the exact solutions for a viscous fluid distribution in Bianchi II, VIII, and IX models. The metric is simplified by assuming a relationship between the coefficients of the metric tensor. Solutions are obtained in two special cases: in one an additional assumption is made where the matter density and the expansion scalar have a definite relation and in the other a barotropic equation of state of the formp= is assumed. While the Bianchi II solutions are already found in the literature the other two classes of solutions are apparently new.  相似文献   

9.
In this paper, we discuss an inflationary scenario via scalar field and fluid cosmology for an anisotropic homogeneous universe model in \(f(R)\) gravity. We consider an equation of state which corresponds to a quasi-de Sitter expansion and investigate the effect of the anisotropy parameter for different values of the deviation parameter. We evaluate potential models like linear, quadratic and quartic models which correspond to chaotic inflation. We construct the observational parameters for a power-law model of \(f(R)\) gravity and construct the graphical analysis of tensor–scalar ratio and spectral index which indicates the consistency of these parameters with Planck 2015 data.  相似文献   

10.
In the bounds of the consistent dynamic interpretation of gravitation (gravidynamics) a gravitational field has been divided into two components: scalar and tensor, each one interacting with its source by the same coupling constant. Consequently, a spherically-symmetrical gravitational field in vacuum generated by a massive object influences test bodies as an algebraic sum of attraction and repulsion. Field energy in vacuum around the source is also a sum of energies of two components — purely tensor and scalar ones of gravitation. At distances from a gravitating object much greater than its gravitational radius, energies of each separate field component are equal to each other at the same point of space.In the bounds of gravidynamics based on the so-called Einstein's linearized equation and proceeding from general principles of theory of classical fields a statement (a theorem) has been formulated on the static gravitational field of a collapsar: a spherically-symmetric object generating a static field in vacuum may always only occupy a finite, nonzero volume.  相似文献   

11.
The vacuum Bianchi type-I, III, V, VI0 and Kantowski-Sachs models have been obtained in a new scalar-tensor theory formulated by Lau and Prokhovnik (1986) under the assumption of a certain relationship between the cosmological term and the scalar field . The dynamical behaviour of these models have been studied.  相似文献   

12.
A spatially homogeneous and anisotropic Bianchi type-III space-time is considered in the framework of a scalar-tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961) in the presence of bulk viscous fluid containing one dimensional cosmic strings. We have found a determinate solution of the field equations using the plausible physical conditions (i) a barotropic equation state for the pressure and density, (ii) special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cimento B74:182, 1983), (iii) shear scalar is proportional to scalar expansion and (iv) the trace of the energy tensor of the fluid vanishes. We have also assumed that bulk viscous pressure is proportional to energy density. Some physical and kinematical properties of the model are, also, discussed.  相似文献   

13.
14.
Certain new analytic solutions for the rotational perturbations of the Robertson-Walker universe are found out to substantiate the possibility of the existence of a rotating viscous universe with zero-mass scalar field. The values for (r, t) which is related to the local dragging of inertial frames are investigated. In all the cases the rotational velocity is found to decay with time. Except for perfect dragging the scalar field is found to have a damping effect on the rotation of matter. The damping effect is found to be roughly analogous to viscosity. In some solutions it is found that the scalar field may exist only during a time period in the course of evolution of the Universe.  相似文献   

15.
In this paper, we analyze higher-dimensional spherical perfect fluid collapse in \(f(R,T)\) theory for minimally coupled models. We use Darmois junction conditions by taking Lemaître-Tolman-Bondi geometry as an interior region and Schwarzschild metric as an exterior spacetime. The solution of field equations is obtained for constant scalar curvature. We determine mass in two regions of the collapsing object and discuss the formation of apparent horizons. We conclude that modified curvature term tends to slow down the collapse rate.  相似文献   

16.
An attempt has been made to solve the field equations with perfect fluid in an inhomogeneous space-time governed by the metric
in both Einstein and Barber's theories of gravitation. It is shown here that in both the theories the field equations are reducible to a Laplace equation and the perfect fluid distribution does not survive. Moreover all the solutions represent plane gravitational wave and the vacuum models in both the theories can be constructed by an arbitrary harmonic function iny and z coordinates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Exponential and power law solutions for homogeneous cosmological modelshave been discussed in a generalized scalar-tensor theory where both thecosmological term and coupling parameter are taken tobe functions of the scalar field , along with the bulk viscousstress of the cosmic fluid. Assuming simple relationships of the scalarfield with the cosmological term and the coupling parameter, all thesolutions are studied in Dicke's revised units. By use of a conformaltransformation, the solutions are also expressed in atomic units.  相似文献   

18.
In FRW space time Brans-Dicke theory is developed for two cases: (i) the vacuum and (ii) the perfect fluid model. The field equations are transformed into a much simpler form under a change of time co-ordinates and then the solutions are determined for the above cases. An equation of statep =/3 (radiation) is assumed in the case of perfect fluid.  相似文献   

19.
In this paper, we have evaluated solutions for Domain walls with sphericalsymmetry in four and five dimensional space time. Exact solutions ofEinstein equations coupled to scalar field with a potential V() are presented. Here scalar field depends both on radial and timecoordinates. Pressures perpendicular to the wall are taken to benon-zero. The solutions are obtained using functional separability ofmetric coefficients. Also we study the gravitational effects on testparticles.Pacs Nos: 04.20jb, 98.80 Bp  相似文献   

20.
In this paper we have studied B-D theory and general scalar tensor theory of Gravitation for anisotropic cosmological model in the false vacuum state. The possibility of both exponential inflation and power function inflation are examined for constant or variable coupling parameter . Also asymptotic limit of the scalar field and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号