共查询到20条相似文献,搜索用时 0 毫秒
1.
Terrence J. Toy 《地球表面变化过程与地形》1983,8(4):313-322
The Linear Erosion/Elevation Measuring Instrument (LEMI) offers an alternative to erosion pins for assessing changes in the ground surface that need not disturb the soil at the point of measurement. The device, fabricated from two carpenter's levels, is mounted on each of a series of support rods implanted along a hillslope profile. The vertical distance between the LEMI and the surface may be recorded to the nearest one-half millimetre. Testing indicates that the use of the LEMI sacrifices about one millimetre of measurement replicability while obtaining undisturbed site data. 相似文献
2.
Landslide erosion is a dominant hillslope process and the main source of stream sediment in tropical, tectonically active mountain belts. In this study, we quantified landslide erosion triggered by 24 rainfall events from 2001 to 2009 in three mountainous watersheds in Taiwan and investigated relationships between landslide erosion and rainfall variables. The results show positive power‐law relations between landslide erosion and rainfall intensity and cumulative rainfall, with scaling exponents ranging from 2·94 to 5·03. Additionally, landslide erosion caused by Typhoon Morakot is of comparable magnitude to landslide erosion caused by the Chi‐Chi Earthquake (MW = 7·6) or 22–24 years of basin‐averaged erosion. Comparison of the three watersheds indicates that deeper landslides that mobilize soil and bedrock are triggered by long‐duration rainfall, whereas shallow landslides are triggered by short‐duration rainfall. These results suggest that rainfall intensity and watershed characteristics are important controls on rainfall‐triggered landslide erosion and that severe typhoons, like high‐magnitude earthquakes, can generate high rates of landslide erosion in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
3.
Soil surface roughness contains two elementary forms, depressions and mounds, which affect water flow on the surface differently. While depressions serve as temporary water storage, mounds divert water away from their local summits. Although roughness impacts on runoff and sediment production have been studied, almost no studies have been designed explicitly to quantify the evolution of depressions and mounds and how this impacts runoff generation and sediment delivery. The objectives of this study were to analyze how different surface forms affect runoff and sediment delivery and to measure the changes in surface depressions and mounds during rainfall events. A smooth surface was used as the control. Both mounds and depressions delayed the runoff initiating time, but to differing degrees; and slightly reduced surface runoff when compared to the runoff process from the smooth surface. Surface mounds significantly increased sediment delivery, whilst depressions provided surface storage and hence reduced sediment delivery. However, as rainfall continued and rainfall intensity increased, the depression effect on runoff and erosion gradually decreased and produced even higher sediment delivery than the smooth surface. Depressions and mounds also impacted the particle size distribution of the discharged sediments. Many more sand‐sized particles were transported from the surface with mounds than with depressions. The morphology of mounds and depressions changed significantly due to rainfall, but to different extents. The difference in change had a spatial scale effect, i.e. erosion from each mound contributed to its own morphological change while sediments deposited in a depression came from a runoff contributing area above the depression, hence a much greater source area than a single mound. The results provide a mechanistic understanding of how soil roughness affects runoff and sediment production. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
强降水是洪灾及相关衍生灾害的最主要原因之一,而过去单靠某一种变量诊断预报强降水,具有较大难度.本文在已有研究的基础上,根据强降水发生发展的物理机制,将引起降水的热力、动力和水汽条件综合考虑,尝试性地构建了一个新的综合指数THP(Temperature, Helicity and Precipitable water).然后针对两次强降水过程,利用NCEP/NCAR 1°×1°的再分析资料和地面常规观测资料,对THP指数进行了诊断分析,并选用2012年7月1日-8月15日的降水实况,对该指数进行了普适性检验.结果表明:(1) THP指数的变化可以有效表征强降水过程的发展和移动.对于降水落区的预报,THP指数的大值区与未来6 h的降水中心基本对应;对于降水发生时刻的预报,THP指数的位相变化超前于地面降水的变化,具有较好的指示性;(2) 对于高空槽前型降水,THP指数对降水强度也有一定的诊断意义,且普适性检验表明,该指数在我国中东部地区的盛夏期间具有良好的适用性;(3) 基于配料法的思想,THP指数将有利于强降水出现的、具有清晰物理意义的信号进行了集成,相比于表征单一物理量的指数,其稳定性得到了增强. 相似文献
5.
A. M. Dawod P. Y. Julien 《Stochastic Environmental Research and Risk Assessment (SERRA)》1987,1(2):127-134
Point rainfall triggers the complex processes of overland flow and surface erosion. The probability density functions of rainfall duration and intensity are coupled with a physically based dynamic formulation of rainfall-runoff-sediment transport relationships for upland areas. When considering a single storm, rainfall depth alone is a poor predictor of sediment transport because of the dispersion introduced by the effect of rainfall intensity. On a long terms basis, however, the total amount of rainfall can be used to predict total erosion losses. 相似文献
6.
This paper explores a scale‐adapted erosion mapping method which aims at a rapid assessment of field erosion and sediment transport pathways in catchments up to several square kilometres and compares the results with the output of a well‐known erosion model (LISEM). The mapping method is based on an event‐defined classification scheme of erosion intensity (zero, weak, moderate and strong) that is applied to arable fields, in combination with incision measurements of erosion features for each erosion intensity class on a small sample of fields. Sediment deposition is classified on the basis of quantity indicators and abundance. In addition, relevant conditions and erosion factors are determined for each field. The method was applied to an agricultural catchment (4·2 km2) in the Sundgau (Alsace), after a short but violent thunderstorm in May 2001, to illustrate its potential use and its limitations. The rainfall event led to strong erosion on the arable fields and a muddy flow that caused significant damage in the built‐up area. On the basis of the analyses of the incision measurements in combination with the mapping of erosion intensity classes, total erosion for the catchment was estimated as 15 000 t (an average of about 36 t[sol ]ha). Sediment deposition was found to occur in three major locations: (1) in thalwegs at the interface between maize and downslope winter wheat fields, (2) in downslope headlands where the flow direction suddenly changed due to oriented tillage structures in the perpendicular direction, and (3) the lowest corners of fields which collect all the runoff from the field. Preliminary data analyses suggest that erosion intensity is related to field size and[sol ]or tillage direction and to slope morphology. Model output (LISEM) appeared to depend more strongly on slope gradient than the results obtained with the mapping method. The method yields a database, which can be used as a foundation for conservation strategies in small regions with similar land use and geomorphology. The mapping and modelling methods are compared, and their complementary aspects are highlighted. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
7.
This paper discusses the effects of water quality on the hydrological and erosion response of non‐saline, non‐sodic soils during simulated rain experiments. It is well known that rain water quality affects the behaviour of saline soils. In particular, rain simulation experiments cannot be run using tap water if realistic values of infiltration rates and soil erosion are to be found. This paper reports on similar effects for non‐saline, non‐sodic soils. Two soils – a well‐aggregated clay‐rich soil developed on marine silty clay deposits and a soil developed on silt loam – were selected and subjected to a series of simulated rainstorms using demineralized water and tap water. The experiments were conducted in two different laboratories in order to obtain results independent of the tap water quality or the rainfall simulator characteristics. The results indicate that time‐to‐ponding is largely delayed by solute‐rich water (tap water). When tap water is used, infiltration rates are significantly overestimated, i.e. by more than 100 per cent. Interrill erosion rates increase by a factor of 2·5–3 when demineralized water is used. The silty clay soil was more affected by the water quality than the silt loam soil, with respect to infiltration and runoff production. Regarding interrill erosion rates, the two tested soils were similarly affected by the water quality. Therefore, it can be concluded that rainfall simulation experiments with non‐dispersive soils (e.g. non‐saline, non‐sodic) must also be conducted using water with very low electrical conductivity (i.e. less than 30–50 µS cm−1), close to that of distilled water. The use of tap water certainly hampers comparisons and the relative ranking of the hydrological and erosion response of different soils, while parameter values, such as final infiltration rate or time‐to‐ponding, cannot be extrapolated and extended to natural situations. Therefore, the majority of hydrological and erosion models and parameter values measured during rainfall simulations in the past should be used with caution for all types of soils. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
8.
Wim Clymans Eric Struyf An Van den Putte Christoph Langhans Zhengang Wang Gerard Govers 《地球表面变化过程与地形》2015,40(9):1171-1181
Amorphous silica (ASi) carried in suspension by rivers is an important component in the global Si budget. Water erosion processes in cultivated catchments are likely to drive ASi delivery to the river system. However, no studies have investigated the controls on ASi mobilization by erosional processes in croplands. Rainfall experiments were performed on split fields (i.e. a part conventionally ploughed and a part under reduced tillage) to simulate ASi mobilization by inter‐rill erosion in croplands, and identify its dependency on soil, field and rainfall characteristics. The ASi content of the soil and the inter‐rill erosion rate were determined as the major controls on ASi mobilization. Variables such as tillage technique and crop type did not have a consistent direct or indirect effect. Inter‐rill erosion is clearly selective with respect to ASi, indicating association of ASi with the fine soil fraction and with soil organic carbon. Our experiments demonstrate that erosion increases due to human perturbation will increase the delivery of reactive Si to aquatic systems. We estimate that globally, c. 7% of all reactive Si that enters aquatic systems is derived from erosion of agricultural soils. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
Rill development and soil erosion: a laboratory study of slope and rainfall intensity 总被引:7,自引:0,他引:7
Catherine Berger Marcel Schulze Dirk Rieke‐Zapp Fritz Schlunegger 《地球表面变化过程与地形》2010,35(12):1456-1467
A total of 15 rainfall simulation experiments were conducted in a 1 m by 2 m box varying slope (10, 20, 30%) and rainfall intensity (60, 90, 120 mm h?1). The experiments were performed to study how rill networks initiate and evolve over time under controlled conditions with regard to the treatment variables considered, and to allow for input in a computer simulation model. Runoff and sediment yield samples were collected. Digital elevation models were calculated by means of photogrammetry for several time steps of most experiments. The soil used in the experiments was a basal till derived Cambisol typical for the Swiss Plateau. While significant differences were found for sediment yield, runoff did not vary significantly with treatment combinations. Increasing rainfall intensity had a larger effect on sediment yield than increasing slope. Rill density and energy expenditure decreased with time, suggesting that energy expenditure was a useful parameter to describe the emergence of rill network at the laboratory scale. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
The interrill erosion for a sandy loam soil 总被引:1,自引:0,他引:1
Gabriella BALACCO 《国际泥沙研究》2013,28(3):329-337
This paper resumes a laboratory experience on a slope adjustable plot with the aim of examining the role of rainfall intensity and slope gradient for a sandy loam soil, typical of Southern Italy, with particular initial moisture content. The results of the simulations performed show that a rainfall reduction causes a corresponding percentage reduction of sediment output. A similar behaviour can be attributed to slope gradient, while runoff moderately increases with rainfall intensity but it is not sensitive to slope gradient. Data also highlight that the degree of saturation can affect runoff and soil loss values. 相似文献
11.
Runoff and sediment lost due to water erosion were recorded for 36 (1 m2) plots with varying types of vegetative cover located on sloping gypsiferous fields in the South of Madrid. 75% of the events had maximum 30‐minute intensity (I30) less than 10 mm h?1 in the period studied (1994–2005). As for the vegetative cover, maximum correlation between runoff and soil loss was found in the least protected plots (0–40% cover) during the most intense rainfall events; however, a significant positive correlation was also observed in plots with greater coverage (40–60%). If coverage exceeded 60%, rainfall erosivity declined. The average amount of sediment produced in high‐intensity events was significantly greater (approximately 7 g m?2 per I30 event >10 mm h?1) than that produced in the rest of the moderate‐intensity events (approximately 3 g m?2 per I30 event <10 mm h?1), but due to the high rate of occurrence of the latter throughout the year sediment loss during the period studied totaled 128 g m?2. By comparison, only 40 g m?2 was produced by the I30 events greater than 10 mm h?1. Even though the amount of soil lost is relatively insignificant from a quantitative standpoint, the organic matter content lost in the sediment (six times more than in the soil) is a permanent loss that threatens the development of the surface of the soil in this area when the vegetative cover is less than 40%. The soil here experiences a chronic loss of 0·02 mm annually as a consequence of frequent, moderate events, in addition to any loss produced by extraordinary events, which, though less frequent, are much more erosive. If moderate events are ignored, an important part of soil loss will be lost in the long run. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
12.
The impact of rainfall pattern on the interrill erosion process is not fully understood despite its importance. Systematic rainfall simulation experiments involving various rainfall intensities, stages, intensity sequences, and surface cover conditions were conducted in this study to investigate their effects on the interrill erosion process. Five rainfall patterns designed with the same total kinetic energy/precipitation (increasing, decreasing, rising–falling, falling–rising and constant patterns) were randomly delivered to a pre‐wet clay loam soil surface at a 10° slope gradient. Significant differences in soil losses were observed among the different rainfall patterns and stages, but there was no obvious difference in runoff. Kinetic energy flux (KEr) was a governing factor for interrill erosion, and constant rainfall pattern (CST) produced nine times greater soil loss than runs with no KEr. Varied‐intensity patterns had a profound effect on raindrop‐induced sediment transport processes; path analysis results indicated that said effect was complex, interactive and intensity‐dependent. Low hydraulic parameter thresholds further indicated that KEr was the dominant factor in detaching soil particles, while overland flow mainly contributed to transporting the pre‐detached particles. This study not only sheds light on the mechanism of interrill sediment transport capacity and detachability, but also may provide a useful database for developing event‐based interrill erosion prediction models. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
13.
An inexpensive, mobile field rainfall simulator and runoff plot frame were developed for use on hillside vineyards. The simulator framework and components were lightweight, readily available and easily manageable such that they can be handled by one person during transport, set–up and operation. The vineyard rainfall simulator was simpler than many of the machines in recent use for similar studies, yet offered equal or improved performance for small‐plot studies. The system developed consistent sized 2·58 mm raindrops at intensities ranging from 20 to 90 mm/h. The average distribution uniformity coefficient at an intensity of 60 mm/h was 91·7%, with a deviation of only 2·2%. This coefficient was similar to the range reported for a more complex rotating disk simulator, and was notably greater than that obtained for other similar devices. The system water capacity of 40 l allowed for 1‐h storm durations at 60 mm/h, usually sufficient time for commencement of erosion and runoff. The runoff plot frame was designed to be quickly installed, and to discourage sediment deposition in the routing of runoff to collect containers. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
14.
本文利用中尺度模式Weather Research and Forecasting Model (WRF) 3.1版本及National Centers for Environmental Prediction (NCEP)分析资料,就2003年6月下旬我国江淮及南方地区的强降水事件, 以24 h短期天气模拟的方式,研究了模式中四个不同陆面方案对降水模拟的影响.结果表明,此次暴雨事件模拟对不同陆面方案是比较敏感的,模拟区域内雨量级别越高,不同方案的TS评分差异就越大,较大范围雨量可存在30%的差异,四种方案的暴雨中心值可存在100%~150%的较大差别;不同陆面方案还导致了模拟平均感热通量及潜热通量的系统性差异,这些差异的分布具有地域特点;陆面方案通过两种机理对模拟降水产生重要影响,即主要影响地表蒸发量,以及主要影响低层环流及水汽辐合,从而分别影响模拟的较大范围降水(如,平均约7%、最大约30%的较大范围雨量差异)及包含模拟降水中心的较小范围暴雨(如,方案间暴雨中心雨量可存在100%~150%的较大差别).可见,不同陆面过程可从不同空间尺度、不同程度上影响暴雨天气,改进陆面方案可以提高WRF模式对暴雨的模拟能力. 相似文献
15.
In semi‐arid areas, high‐intensity rainfall events are often held responsible for the main part of soil erosion. Long‐term landscape evolution models usually use average annual rainfall as input, making the evaluation of single events impossible. Event‐based soil erosion models are better suited for this purpose but cannot be used to simulate longer timescales and are usually applied to plots or small catchments. In this study, the openLISEM event‐based erosion model was applied to the medium‐sized (~50 km2) Prado catchment in SE Spain. Our aim was to (i) test the model's performance for medium‐sized catchments, (ii) test the ability to simulate four selected typical Mediterranean rainfall events of different magnitude and (iii) explore the relative contribution of these different storms to soil erosion using scenarios of future climate variability. Results show that because of large differences in the hydrologic response between storms of different magnitudes, each event needed to be calibrated separately. The relation between rainfall event characteristics and the calibration factors might help in determining optimal calibration values if event characteristics are known. Calibration of the model features some drawbacks for large catchments due to spatial variability in Ksat values. Scenario calculations show that although ~50% of soil erosion occurs as a result of high frequency, low‐intensity rainfall events, large‐magnitude, low‐frequency events potentially contribute significantly to total soil erosion. The results illustrate the need to incorporate temporal variability in rainfall magnitude–frequency distributions in landscape evolution models. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
Responses of water erosion to rainfall extremes and vegetation types in a loess semiarid hilly area,NW China 总被引:6,自引:0,他引:6
Rainfall extremes (RE) become more variable and stochastic in the context of climate change, increasing uncertainties and risks of water erosion in the real world. Vegetation also plays a key role in soil erosion dynamics. Responses of water erosion to RE and vegetation, however, remain unclear. In this article, on the basis of the data measured on 15 plots (area: 10 m × 10 m and 10 m × 5 m) and the definition of World Meteorological Organization (WMO) on rainfall extremes, 158 natural rainfall events from 1986 to 2005 were analysed, and rain depth and maximal 30‐min intensity (MI30) were used to define RE. Then, water erosion process under RE and five vegetation types (spring wheat, alfalfa, sea buckthorn, Chinese pine, and wheatgrass) were studied in a key loess semiarid hilly area, NW China. The following findings were made: (1) The minimal thresholds of depth and MI30 for defining RE were determined as 40·11 mm and 0·55 mm/min, respectively. Among the studied rainfall events, there were four events with both the variables exceeding the thresholds (REI), five events with depths exceeding 40·11 mm (REII), and four events with MI30 exceeding 0·55 mm/min (REIII). Therefore, not only extreme rainstorm, but also events with lower intensities and long durations were considered as RE. Moreover, RE occurred mostly in July and August, with a probability of 46 and 31%, respectively. (2) Extreme events, especially REI, in general caused severer soil‐water loss. Mean extreme runoff and erosion rates were 2·68 and 53·15 times of mean ordinary rates, respectively. The effect of each event on water erosion, however, becomes uncertain as a result of the variations of RE and vegetation. (3) The buffering capacities of vegetation on RE were generally in the order of sea buckthorn > wheatgrass > Chinese pine > alfalfa > spring wheat. In particular, sea buckthorn reduced runoff and erosion effectively after 3–4 years of plantation. Therefore, to fight against water erosion shrubs like sea buckthorn are strongly recommended as pioneer species in such areas. On the contrary, steep cultivation (spring wheat on slopes), however, should be avoided, because of its high sensitivities to RE. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
17.
Mechanisms associated with the erosion of sand dune cliffs,Magilligan, Northern Ireland 总被引:1,自引:0,他引:1
A fifteen year history of coastal dune recession at Magilligan, Northern Ireland has revealed both time and space contrasts in processes and morphology. Since 1968 ‘storm’ frequency has increased, while dune retreat reached a peak (5·4 m) in 1978–1979. Three types of dune eroding events are noted, resulting from particular wave/wind/tide combinations. The spatial variability in dune scarping is associated with vegetation and soil development, and slope failures range from granular avalanches to retrogressive rotational slumps. 相似文献
18.
Kin-Che Lam 《地球表面变化过程与地形》1977,2(4):319-332
Slopewash measurements were made at 449 sites on the badlands of Hong Kong over a 15-month period. The mean amount of ground retreat was 2.17 cm and the spread of data was large (coefficient of variation = 36.6 per cent). This demonstrates a large variation in rates of slopewash in the study area. A large sample size is suggested for any future work to narrow the limits of the sampling error. It is also shown that ground retreat, as conventionally measured in the field, is different and should be distinguished from vertical lowering. In the study of erosion rates and slope evolution, different conclusions are likely to be drawn unless the distinction is realized. Various attempts have been made to account for the observed variations in slopewash rates on the badlands of the study area. It was found that the site to site variations in slopewash rate could not be attributed to the conventional soil, microtopographic and distance parameters. This absence of relationship is probably due to the fact that the sites on the slope profiles are not isolated systems, but are components of a larger functional entity, in which all sites are in some form of adjustment and equilibrium with the others. 相似文献
19.
Numerical modeling of gravitational erosion in rill systems 总被引:1,自引:0,他引:1
Peng HAN Jin-Ren NI Ke-Bin HOU Chi-Yuan MIAO and Tian-Hong LI Assoc.Prof Prof. Master Dr. Assoc.Prof. 《国际泥沙研究》2011,(4):403-415
A self-organizing model was developed for simulating rill erosion process on slopes with particular attention to the role of gravitational erosion.For a complete simulation circle,processes such as precipitation,infiltration,runoff,scouring,gravitational erosion and elevation variation were fully considered.Precipitation time(or runoff time) was regarded as iteration benchmark in the model.To specify the contribution of gravitational erosion to the process of rill formation and development,a gravitational erosion module was inserted into the model.Gravitational erosion in rill development was regarded as a Gaussian random process.A model was calibrated by our experimental data,and further validated satisfactorily with 22 runs of experimental results from different investigators. Systematic comparison was made between sediment yields with and without consideration of gravitational erosion module.It was demonstrated that the model could reasonably simulate the rill erosion process under a variety of slope gradients,rainfall intensities and soil conditions upon the gravitational erosion being considered.However,the role of gravitational erosion on sediment yields in rill systems varies significantly under different conditions,although it is of the utmost importance in steeper slopes.The process of gravitational erosion in rill development was studied by a newly-defined parameter a>,which is defined as the volume ratio of gravitational erosion over hydraulic-related erosion.The gravitational contribution to the total erosion could be over 50%for the rill systems with higher rainfall intensity and steeper slopes. 相似文献
20.
The impacts of climate change on storm runoff and erosion in Mediterranean watersheds are difficult to assess due to the expected increase in storm frequency coupled with a decrease in total rainfall and soil moisture, added to positive or negative changes to different types of vegetation cover. This report, the second part of a two‐part article, addresses this issue by analysing the sensitivity of runoff and erosion to incremental degrees of change (from ? 20 to + 20%) to storm rainfall, pre‐storm soil moisture, and vegetation cover, in two Mediterranean watersheds, using the MEFIDIS model. The main results point to the high sensitivity of storm runoff and peak runoff rates to changes in storm rainfall (2·2% per 1% change) and, to a lesser degree, to soil water content (?1·2% per 1% change). Catchment sediment yield shows a greater sensitivity than within‐watershed erosion rates to both parameters: 7·8 versus 4·0% per 1% change for storm rainfall, and ? 4·9 versus ? 2·3% per 1% change for soil water content, indicating an increase in sensitivity with spatial scale due to changes to sediment connectivity within the catchment. Runoff and erosion showed a relatively low sensitivity to changes in vegetation cover. Finally, the shallow soils in one of the catchments led to a greater sensitivity to changes in storm rainfall and soil moisture. Overall, the results indicate that decreasing soil moisture levels caused by climate change could be sufficient to offset the impact of greater storm intensity in Mediterranean watersheds. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献