首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
改则洞错蛇绿岩规模大,各组成单元齐全,其中斜长花岗岩广泛分布。地球化学分析结果表明,洞错斜长花岗岩SiO_2含量66.83%,Al_2O_3含量小于15%,K_2O含量大于2%,高强场元素(Zr、Hf)相对富集,CIPW标准矿物中含有少量的刚玉(C)与传统大洋斜长花岗岩相区别。稀土元素配分表现为LREE相对HREE富集、HREE近水平的型式,与传统的大洋斜长花岗岩相区别。所以洞错斜长花岗岩可能属于洋壳运移过程中剪切带岩石部分熔融作用形成。获得的锆石LA-ICP-MS锆石U-Pb年龄为(157.6±4.3)Ma,代表了班公湖—怒江特提斯洋壳俯冲-消减阶段的时间。  相似文献   

2.
大洋斜长花岗岩一般作为蛇绿岩的组成部分,发育规模往往较小,目前世界上不与蛇绿岩共生或有成因关系的斜长花岗岩实例较少,关于不发育蛇绿岩的大规模大洋斜长花岗岩的报道更是少见。本文通过岩石学、岩石地球化学、锆石UPb定年和Hf同位素研究,论证西昆仑造山带西北缘发育着大规模由英云闪长岩、石英闪长岩和奥长花岗岩组成的大洋斜长花岗岩带。以该斜长花岗带中奥依塔克岩体和萨罗依岩体为研究对象,测得其锆石LA-ICP-MS U-Pb年龄分别为322.8±2.2Ma、319.0±1.7Ma,锆石均具较高的正εHf(t)值(11.06~16.93),模式年龄为320~540Ma(平均值为396.1Ma),大于其形成年龄。岩石具低的Al2O3、高Ca O和Mg O含量,强烈的富钠贫钾,稀土元素总量较低,LREE稍亏损或平坦型配分型式,通过与世界典型大洋斜长花岗岩的对比,该斜长花岗岩带属于典型大洋斜长花岗岩,但相对具负Eu异常,富集K、Rb,亏损Nb、Ta元素。对该大规模斜长花岗岩的成因研究进行了探索,认为该斜长花岗岩带不是传统的玄武质岩浆结晶分异成因,而是在低压(0.1GPa)低温(737~781℃)条件下镁铁质洋壳发生部分熔融的产物,残留相为斜长石+角闪石±斜方辉石±钛铁矿(无石榴石)。结合区域资料,西昆仑西北缘斜长花岗岩带是在晚石炭世弧后盆地的伸展裂解环境下以乌鲁阿特组(玄武岩夹沉积岩)为代表的早石炭世新生镁铁质洋壳部分熔融所形成的产物。  相似文献   

3.
蛇绿岩在不同演化阶段自身形成的花岗质岩石和侵入到蛇绿岩中的花岗质岩石对于蛇绿岩的精确定年具有重要意义,是揭示洋壳俯冲时限的有力证据。对北阿尔金红柳沟—拉配泉蛇绿岩中斜长花岗岩和花岗闪长岩的锆石U-Pb及Lu-Hf同位素分析表明,红柳沟斜长花岗岩和花岗闪长岩的锆石LA-ICP-MS U-Pb定年结果分别为(501±3)Ma和(496±2)Ma,表明北阿尔金洋的俯冲时限可能开始于中寒武世或更早。斜长花岗岩和花岗闪长岩的锆石εHf(t)值均为正值,结果分别为1.6~5.6和3.3~6.9,反映其源区均为亏损型地幔。全岩地球化学分析结果表明,斜长花岗岩具有高Si O2、高Sr、低Y和相应的高Sr/Y等类似于埃达克质岩石的特征,可能来自热的洋壳俯冲到石榴角闪岩相条件下变基性岩发生小比例部分熔融形成,且其形成深度应该在40~50 km;花岗闪长岩属于高钾钙碱性系列岩石,可能代表了岛弧环境下下地壳基性岩石部分熔融的产物。年代学分析表明,北阿尔金洋可能存在南北双向俯冲,并且北阿尔金洋向北俯冲可能略早于向南俯冲。北阿尔金和北祁连的俯冲时限对比研究表明,北阿尔金早古生代缝合带是北祁连早古生代缝合带的西延部分。  相似文献   

4.
宋述光  杨立明 《地球科学》2019,44(12):4167-4172
岛弧的形成和演化对于理解板块构造和大陆生长有重要意义.祁连山-西秦岭一带发育两条不同类型的弧岩浆岩带,其北侧为北祁连增生杂岩带,由蛇绿岩、高压变质岩和大陆型弧岩浆岩带组成,形成时代为520~440 Ma.岩浆岩以中酸性火山岩-侵入岩为主,部分地区发育典型双峰式火山岩.南侧为祁秦增生杂岩带,由寒武纪蛇绿岩(525~490 Ma)和奥陶纪IBM型洋内弧岩浆岩(470~440 Ma)组成,蛇绿岩以拉脊山-永靖洋底高原型蛇绿岩为代表,蛇绿岩的上部熔岩部分由夏威夷型苦橄岩、板内碱性玄武岩和板内拉斑玄武岩组成,为大洋板块内部地幔柱活动产物.洋内弧岩浆岩以高镁玄武岩、玄武安山岩、高铝安山岩、玻安岩为主,局部发育赞岐岩.祁秦增生杂岩带的蛇绿岩和弧火山岩组合很好地说明洋底高原与海沟碰撞和俯冲带阻塞是造成俯冲带起始和新的洋内弧形成和发展主要因素.   相似文献   

5.
简平  刘敦一  孙晓猛 《地质学报》2003,77(2):217-228
本文应用SHRIMP方法精确测定了金沙江蛇绿岩带中蛇绿岩的辉长岩和斜长岩、呈脉状产于辉长岩和变质橄橄岩中的斜长花岗岩、以及呈岩株状侵入蛇绿岩中的花岗闪长岩的锆石U-Pb年龄,提供了古特提斯洋壳演化的年代学制约。滇西之用层状角闪辉长岩的年龄为328±8Ma,书松斜长岩为329±7Ma,白马雪山辉长岩为282~285Ma,它们可能反映了海底扩张不同阶段的时代。研究还表明,在这些辉长岩和斜长岩中,部分锆石记录了375~352Ma的略老的年龄,暗示蛇绿岩浆活动可能始于晚泥盆世。在金沙江蛇绿岩中,滇西娘九丁斜长花岗岩和川西雪堆斜长花岗岩,具有高硅低钾的成分特征。但是,这些岩石的REE总量高,LREE富集;Sr初始值高,达0.7058~0.7070;在其锆石组成中,存在继承锆石。这些证据表明斜长花岗岩中存在陆壳物质的混染,可能与洋壳俯冲消减有关。娘九丁斜长花岗岩的年龄为285±6Ma,雪堆斜长花岗岩为300±5Ma,记录了古特提斯洋壳俯冲消减事件。滇西吉义独花岗闪长岩,呈岩株状侵入蛇绿岩中,年龄为263±6Ma,限定了蛇绿混杂岩的年代上限。  相似文献   

6.
蛇绿岩是造山带研究的关键问题之一,文章在野外地质调查的基础上,通过岩石学、同位素年代学、地球化学等综合研究,认为东秦岭丹凤地区分水岭蛇绿岩是与俯冲带相关的SSZ型蛇绿岩。其中的变玄武岩是产于弧前构造环境的玻玄岩,它具有较玻安岩稍低的Si O2含量,同时具有高Mg O(9.24%~18.74%)和Mg#(74~85)、低Ti O2(0.15%~0.38%)和球粒陨石标准化稀土元素配分曲线呈"U"型及相容元素Ni、Cr丰度较高,高场强元素(HFSE)Y、V、Zr、Yb丰度较低等地球化学特征。变辉长岩的LA-ICP-MS锆石U-Pb年龄表明分水岭蛇绿岩形成于(499.7±6.1)Ma,玻玄岩的存在暗示着此时的古商丹洋强烈向北俯冲,在洋内俯冲带和北秦岭南缘之间形成了与俯冲带相关的SSZ型蛇绿岩,进一步补充完善了秦岭造山带的地质演化历史。  相似文献   

7.
青藏高原西部蛇绿岩中玻安岩(boninite)及其地质意义   总被引:8,自引:1,他引:7  
简要报道了在青藏高原西部班公湖蛇绿岩带和狮泉河蛇绿岩带之间的火山岩中识别出的玻安岩。玻安岩是俯冲岩浆作用的产物,在青藏高原东部及周边地区已有玻安岩或玻安岩系岩石存在的报道。结合西部出现的玻安岩说明青藏高原地区俯冲作用普遍存在。玻安岩的形成时代为J2-K1,埃达克岩的形成时代为K1,由J2-K1,的玻安岩至K1的埃达克岩反映冈底斯北部岛弧带由不成熟的洋内弧向成熟岛弧转变的过程,它们是中生代冈底斯北部大陆水平生长(侧向增生)的记录。  相似文献   

8.
本文在班公湖-怒江缝合带中段洞错蛇绿岩中新厘定一套洋内俯冲成因的岩石组合,岩性以橄榄岩、堆晶岩(包括堆晶辉长岩和斜长花岗岩)、辉长岩墙、枕状熔岩和辉绿岩脉等为主。堆晶辉长岩、辉长岩墙和辉绿岩脉锆石U-Pb测年显示,它们形成于中侏罗世(172~165Ma)。辉长岩墙和辉绿岩脉地球化学和锆石Lu-Hf同位素分析显示,它们兼具N-MORB和岛弧玄武岩地球化学特征,且均来自亏损地幔源区,形成过程中受到了俯冲流体的影响。结合区域上同时期的玻安岩、高镁安山岩和钙碱性岩浆岩等资料,我们得出班公湖-怒江缝合带内保存了一套相对完整的早-中侏罗世洋内弧岩石层序,记录了班公湖-怒江洋早-中侏罗世时期的洋内俯冲事件。早-中侏罗世是班公湖-怒江洋快速消减期,洋内俯冲和洋-陆俯冲同时存在。  相似文献   

9.
赵东辉  平先权  郑建平  艾磊  邓昊 《地球科学》2019,44(12):4203-4221
西秦岭东部发育大量小规模中酸性脉岩,但对这些脉岩的研究相对缺乏.在详细的野外观察和岩相学研究的基础上,对西秦岭天水铁堂峡石英正长斑岩进行了地球化学、锆石U-Pb年代学和Lu-Hf同位素研究.石英正长斑岩的锆石U-Pb定年结果表明它们的形成时代为~250 Ma,属印支早期岩浆产物.地球化学研究显示它们属于弱过铝质的高钾钙碱性岩系列,高Mg#,以富集Ba、Sr、K,强烈亏损Nb、Ta,且Eu异常不明显为特征.这些特征与埃达克岩的性质相似.铁堂峡石英正长斑岩的锆石εHf(t)值介于-1.44~+3.17,一阶段Hf模式年龄(tDM1)在765~945 Ma之间.铁堂峡石英正长斑岩形成于阿尼玛卿洋北向俯冲的大陆边缘弧环境,是俯冲洋壳及大洋沉积物熔体与上覆地幔楔作用的产物,并在浅部岩浆房中经历了轻微的分离结晶作用.   相似文献   

10.
西准噶尔谢米斯台花岗岩研究程度偏低, 运用锆石LA-ICP-MS U-Pb年代学、地球化学及锆石Lu-Hf同位素方法研究西准谢米斯台西段地区花岗岩, 结果表明: 谢米斯台岩体(427.6±2.3 Ma)和哈勒盖特希岩体(428.6±2.5 Ma)均形成于中志留世; 谢米斯台碱长花岗岩地球化学特征类似于Ⅰ型花岗岩, 哈勒盖特希碱长花岗岩地球化学特征类似于A型花岗岩; 锆石Hf同位素组成较均一, εHf(t)=12.4~14.5, 二阶段模式年龄tDM2变化范围在497~603 Ma之间, Ⅰ型花岗岩和A2型花岗岩可能形成于后碰撞阶段的挤压-伸展转变期, 是中志留世额尔齐斯-斋桑洋壳向南俯冲至波谢库尔-成吉斯火山弧底部, 俯冲板片与岛弧底部岩石圈之间剪切带的物质发生变形、变质及部分熔融作用, 使得由亏损地幔形成不久的年轻地壳(由洋壳和岛弧组成)发生部分熔融形成的长英质岩浆经进一步分离结晶作用形成分异Ⅰ型花岗岩和高温、缺水A2型花岗岩, A2型花岗岩较Ⅰ型花岗岩分离结晶程度高.   相似文献   

11.
内蒙古二连—贺根山缝合带额很傲包图英云闪长岩体,出露于西乌旗梅劳特乌拉SSZ型蛇绿岩带北侧.为了确定该岩体的岩石成因类型,探讨其构造环境及古亚洲洋俯冲消亡过程,对该岩体进行了岩石学、地球化学和LA-ICP-MS锆石U-Pb年代学研究.额很傲包图英云闪长岩高硅富铝,富钠贫钾,高锶低钇,富集Rb、Ba、Sr等大离子亲石元素...  相似文献   

12.
The Bangong-Nujiang suture zone (BNSZ) separates the Lhasa terrane from the Qiangtang terrane and contains remnants of the Bangong-Nujiang oceanic lithosphere (ophiolites). Despite decades of research, when and how the Bangong-Nujiang ophiolites were emplaced remains enigmatic. In the Gerze area (western segment of the BNSZ), the geochemistry and provenance discrimination of chromian spinels (Cr-spinels) from the pre-collisional subduction complex (Mugagangri Group) and syn-collisional peripheral foreland basin succession (Wuga Formation) can help us solve this fundamental problem in the BNSZ evolution. This study compares the geochemistry of Cr-spinels from the Mugagangri Group and Wuga Formation with those from the Bangong-Nujiang ophiolites. Cr-spinels in the Bangong-Nujiang ophiolites have either low TiO2 (0.01–0.15%) and low Al2O3 (11.74–26.76%), indicating an SSZ peridotite origin, or high Al2O3 (45.28–49.15%), indicating a MORB peridotite origin. Cr-spinels from the ultramafic fragments within the Mugagangri Group have extremely low TiO2 (<0.06%) and geochemically overlap with those from the Dong Co ophiolite, suggesting that these ultramafic fragments were sourced from the Dong Co ophiolite above the subduction zone rather than off-scrapped remnants from the subducting oceanic lithosphere. Compositional fingerprints of detrital Cr-spinels from the Wuga Formation indicate provenance either derived from the Bangong-Nujiang ophiolites or recycled from the Mugagangri Group in the north, with minor input possibly from the Lhasa terrane in the south, consistent with the depositional pattern of a peripheral foreland basin. Provenance data reveals that the Bangong-Nujiang ophiolites in the Gerze area had been emplaced and exposed to erosion during northward oceanic subduction prior to the Lhasa-Qiangtang collision. Contrasting the Tethyan-type Yarlung-Zangbo ophiolites in southern Tibet, the Bangong-Nujiang ophiolites in central Tibet are Cordilleran-type in terms of emplacement mechanism, which were uplifted above sea-level by progressive growth of the subduction complex structurally beneath ophiolite. The emplacement of the Cordilleran-type ophiolites in the western segment of the BNSZ is divided into two stages: (1) intra-oceanic subduction initiation at ~177–179 Ma based mainly on zircon U-Pb dating of plagiogranite from the SSZ-type Laguo Co ophiolite; (2) accretionary emplacement of the ophiolites at ~151–168 Ma constrained by the depositional age of the Mugagangri subduction complex. Final closure of the Bangong-Nujiang Tethyan Ocean may convert the ophiolite emplacement mechanism from “accretionary” to “collisional” at ~150–152 Ma, evidenced by the first development of a peripheral foreland basin.  相似文献   

13.
The Upper Riphean Shaman ophiolitic assemblage was first distinguished and described in the territory of North Transbaikalia. Ophiolites found within a narrow suture (Shaman paleospreading zone) are represented by serpentinized ultrabasites with numerous plagiogranite veins having a U-Pb age of 971 ± 14 Ma, gabbros (939 ± 11 Ma), and basalts (892 ± 16 Ma). The ophiolite section also contains dikes of diabases and gabbro-diabases, siliceous-terrigenous stratum (black shale) of Upper Riphean age. The fragments of island-arc complexes (differentiated volcanites, gabbro-diorites, granites) of the Kelyan island-arc system are also found within the Shaman zone. The presence of Upper Riphean ophiolites in Baikalides of North Transbaikalia testifies to the formation of oceanic crust of the marginal spreading basins in the Precambrian Paleo-Pacific Ocean and the emerging Paleoasian Ocean.  相似文献   

14.
西藏泽当蛇绿岩玄武岩SHRIMP锆石U-Pb年龄 及其地质意义   总被引:1,自引:0,他引:1  
雅鲁藏布江缝合带中各蛇绿岩体的准确定年对待提斯洋演化和青藏高原隆升的研究具有重要意义.泽当蛇绿岩是雅鲁藏布江缝合带东段最大的蛇绿岩块体,关于其形成年龄目前仍存在不同的认识.通过SHRIMP锆石U-Pb测年得到蛇绿岩中玄武岩的形成年龄为154.9Ma±2.0Ma(95%置信度,MSWD=0.98).蛇绿岩中的玄武岩是洋脊扩张的产物,其形成年龄代表了扩张事件的时间,也代表了蛇绿岩的形成时代.结合已有的雅鲁藏布江缝合带蛇绿岩的形成年龄,该年龄进一步反映出雅鲁藏布江缝合带蛇绿岩形成时间具有东早西晚的特点.泽当蛇绿岩与含有埃达克质英云闪长岩的泽当岛弧火成岩基本为同期形成的.地球化学特征显示定年的玄武岩形成于俯冲带之上,且具有指示洋内俯冲环境的地球化学特征.因此,泽当SSZ型蛇绿岩可能形成于洋内俯冲机制.  相似文献   

15.
马江结合带俯冲时代一直是地质研究的热点问题,老挝-越南长山成矿带花岗岩的构造属性是对马江洋闭合时间的重要制约。本文报道了老挝-越南长山成矿带北西段的中细粒花岗岩,其LA-ICP-MS锆石U-Pb年龄为261.34 ±0.69 Ma (MSWD=1.4),为晚二叠世。岩石具有高SiO2(77.01%~78.07%)、高K2O (4.32%~4.57%)、低钙镁(CaO=0.32%~0.34%;MgO=0.04%~0.06%)和低P2O5含量特征,富集Rb、U、Th,明显亏损Ba、Sr、P、Ti和Eu等,属高分异I型花岗岩。该岩体可能是马江洋岩石圈南向俯冲的背景下,由俯冲海洋岩石圈诱导的幔源岩浆侵入古老地壳,形成初生地壳,在后期持续的热事件的影响下,提供足够的热引起初生地壳和古老地壳的混合地壳部分熔融,形成母岩浆,再经历高度分离结晶作用形成。  相似文献   

16.
高出海平面的洋岛和低于海平面的海山是成熟大洋最重要的特征。笔者通过野外调查,于西藏自治区贡嘎县昌果乡普夏东侧的"原桑日群"中新识别出普夏洋岛。通对普夏洋岛的岩石学、地球化学研究及锆石U-Pb定年,认为普夏洋岛具有典型的"玄武岩+灰岩"岩石组合,其中的玄武岩为典型的洋岛玄武岩,形成于以成熟洋壳为基底的洋岛海山环境。普夏洋岛玄武岩的锆石U-Pb定年结果为203.9±1.6Ma和219.5±2.0Ma,表明其形成时代为晚三叠世。综合研究认为,普夏洋岛是雅鲁藏布江特提斯洋发现的较早的洋岛海山之一,证明雅鲁藏布江新特提斯洋在三叠纪已具有成熟的洋壳,普夏洋岛是雅鲁藏布江新特提斯洋向北俯冲形成的桑日群增生杂岩的重要组成部分。普夏洋岛的发现,丰富了新特提斯洋的研究内容,为反演研究区地质构造演化提供了新证据。  相似文献   

17.
本文首次报道了侵位于狮泉河蛇绿岩(蛇纹石化超基性岩)中的具有OIB性质的辉绿岩以及赞岐岩型的高镁闪长岩。其中闪长岩具有较高的TiO_2、Y及Yb含量,较低的Sr/Y比值和La/Yb比值,与日本Setouchi火山岩带的赞岐岩以及前人报道的同期洋内初始俯冲成因相关的高镁安山岩性质一致。辉绿岩富LREE,高Zr/Y、TiO_2/Yb和Nb/Yb比值,Nb、Ti负异常,Pb正异常,表现出了俯冲带相关的OIB性质;采用LA-ICP-MS锆石U-Pb定年方法,测得辉绿岩脉的成岩年龄为163. 7±0. 54Ma(MSWD=3. 8),且该年龄与前人报道的160. 8±2. 3Ma的高镁安山岩年龄较为接近。综合分析本文及前人年代学与岩石地球化学相关数据,认为狮泉河辉绿岩和闪长岩同时形成于洋内俯冲的初始阶段。这种岩石组合与太平洋IBM岛链初始俯冲的岩石组合相似,但该OIB成因机制中俯冲作用与地幔柱之间的相互关系仍需进一步讨论。  相似文献   

18.
阿拉善宗乃山岩体东南缘分布多种类型的花岗岩,本文主要采用岩相学、激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)锆石U-Pb定年、岩石地球化学等技术手段,对宗乃山岩体东南缘岩石类型、年代学、源岩特征以及构造背景进行了研究。结果表明:岩石类型主要为碱性-钙碱性准铝质花岗岩和闪长岩;单颗粒锆石分析获得黑云母斜长花岗岩年龄为236.8±1.9 Ma~249.7±2.6 Ma,片麻状花岗岩年龄为268.1±1.1 Ma,岩体成岩时期主要为华力西晚期和印支期早期,具有多期侵入的特征。该岩体岩石源岩为I型花岗岩,源于地壳火山弧区和同碰撞区,表明由于洋壳俯冲作用,在宗乃山东南缘形成了岛弧花岗岩侵入体。LA-ICP-MS锆石U-Pb定年技术为洋壳俯冲提供了年代学约束,确定了研究区碰撞时间为早于236.8±1.9 Ma。  相似文献   

19.
北祁连山和柴北缘是典型的早古生代大陆造山带,分别发育有北祁连山大洋型俯冲缝合带和柴北缘大陆型俯冲碰撞带.作为早古生代大洋冷俯冲的典型代表,北祁连山经历了从新元古代-寒武纪大洋扩张、奥陶纪俯冲和闭合及早泥盆世隆升造山的过程.高压变质岩变质年龄为490~440Ma,证明古祁连洋经历了至少50m.y.的俯冲过程.柴北缘超高压变质带是大陆深俯冲的结果,岩石学、地球化学和同位素年代学表明,柴北缘超高压变质带中榴辉岩的原岩分别来自洋壳和陆壳两种环境.高压/超高压变质的蛇绿岩原岩的年龄为517±11Ma,与祁连山蛇绿岩年龄一致.榴辉岩早期的变质年龄为443~473Ma,与祁连山高压变质年龄一致,代表大洋地壳俯冲的时代,而柯石英片麻岩和石榴橄榄岩所限定的超高压变质时代为420~426Ma,代表大陆俯冲的年龄.从大洋俯冲结束到大陆俯冲最大深度的转换时间最少需要20m.y..自420Ma起,俯冲的大洋岩石圈与跟随俯冲的大陆岩石圈断离,大陆地壳开始折返,发生隆升和造山.北祁连山和柴北缘两个不同类型的高压-超高压变质带反映了早古生代从大洋俯冲到大陆俯冲、隆升折返的造山过程.  相似文献   

20.
The Yanhu granitoids are located in the west segment of the Bangongco-Nujiang suture in the western Tibetan Plateau. The main rock types of the granitoids are diorite porphyry, quartz diorite, granodiorite, granite and granite porphyry. Here, their zircon LA-ICP-MS U-Pb ages and petrogeochemical data are reported. Three groups of magmatic events can be distinguished from the Yanhu area: group 1 includes samples AK01 and ZK01 of diorite porphyry, and sample D3658 of quartz diorite that yield mean zircon U-Pb ages of 121.0 ± 2.7 Ma, 116.6 ± 2.0 Ma and 116.0 ± 3.9 Ma, respectively; group 2 includes sample D0050 of diorite porphyry, samples D1393 and D3660 of granodiorite and sample D3065 of granite porphyry that yield mean zircon U-Pb ages of 104.9 ± 2.0 Ma, 105.4 ± 3.8 Ma, 104.2 ± 1.9 Ma and 104.2 ± 1.9 Ma, respectively; group 3 includes sample D3093 of granite that yields mean zircon U-Pb ages of 93.6 ± 1.5 Ma. The zircon LA-ICP-MS U-Pb ages suggest that the Yanhu granitoids were emplaced at 121.0–93.6 Ma, representing Cretaceous magmatism in the west segment of the Bangongco-Nujiang suture. The granitoids are composed of SiO2 (56.57 to 76.98 wt.%), Al2O3 (12.20 to 17.90 wt.%), Na2O (3.61 to 4.98 wt.%), K2O (2.06 to 4.71 wt.%) and CaO (0.27 to 5.74 wt.%). The Yanhu granitoids exhibit enrichment in LREE (light REE) and LILE (large ion lithophile elements) such as Rb, Th, U, Pb and K and depletion of HREE (heavy REE), P, Ti, Nb, Ta and Zr. Their A/CNK ratios of 0.85-1.06 are <1.1, implying that they are high-K, metaluminous-weakly peraluminous I-type granites. TheYanhu granitoids were generated mainly by partial melts of the meta-igneous lower crust and some arc-related materials. The Yanhu granitoids probably formed in VAG and syn-COLG tectonic settings related to the southward subduction of the Tethyan Ocean. Diorite porphyry and quartz diorite magmatism from 121.0 Ma to 116.0 Ma may be associated with the southward Bangongco–Nujiang Tethys oceanic crust subduction. Diorite porphyry, granodiorite, and granite porphyry magmatism from 105.4 Ma to 104.2 Ma may be associated with the rising asthenosphere induced by the slab breakoff. Granite magmatism from 93.6 Ma may be related to the crustal thickening induced by the final amalgamation of the Lhasa Terrane and the Qiangtang Terrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号