首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a statistical investigation of 999 blue objects [U(–B) 0.00, limiting magnitude U = 20, B = 21], the majority of which is newly discovered on M31-plates (predominantly taken by F. Börngen ) of the large Schmidt telescope of the Karl Schwarzschild Observatory Tautenburg. A list of the objects is given elsewhere [G. A. RICHTER (1973)].For “very blue objects” [(U – B) -0.40] the number per square degree brighter than magnitude B is as follows: log NB = 0.72 B -13.1 (starlike objects), log NB = 0.63 B -12.0 (diffuse and probably diffuse objects). This confirms the results of other authors: log NB increases more rapidly than in the case of constant density (0.6); there are about 10 QSOs brighter than B = 20 per square degree. A detailed discussion concerning the optical identification of discrete radio sources will soon be given.  相似文献   

2.
On the basis of the intrinsic (U – B)0 colours of the cepheid variables, found by the authors, the UV-excesses in the maximum and minimum light δ(U – B)max and δ(U – B)min are defined. It is found out that the UV-excesses in the maximum light δ(U – B)min increase with the period P (Fig. 2), but there is no correlation between δ(U – B)min and log P. A correlation between δ(U – B)max and the “amplitude defects” fB is also determined. These results in connection with some other considerations, as well as the possible causes of the UV-excesses, are discussed.  相似文献   

3.
UBV photoelectric observations of the W UMa-type binary V471 Cas were made from September to November 1984. Its colour indices were found to be(B-V)=0 . m 771±0 . m 02 and(U-B)=0 . m 196±0 . m 02. TheU, B, andV light curves of V471 Cas show some photometric fluctuations. We found that its orbital period is not 0.335998 days which was given by GCVS (1986), but 0.405356 days.Photometric orbital elements of V471 Cas were found using the Wilson-Devinney method. V471 Cas is a contact system, in which the overcontact factor is 0.19, its mass ratio of two components is 0.5947, and orbital minclination is in 83.29 degrees.  相似文献   

4.
We analyze multiple-wavelength observations of a two-ribbon flare exhibiting apparent expansion motion of the flare ribbons in the lower atmosphere and rising motion of X-ray emission at the top of newly-formed flare loops. We evaluate magnetic reconnection rate in terms of V r B r by measuring the ribbon-expansion velocity (V r) and the chromospheric magnetic field (B r) swept by the ribbons. We also measure the velocity (V t) of the apparent rising motion of the loop-top X-ray source, and estimate the mean magnetic field (B t) at the top of newly-formed flare loops using the relation 〈V t B t〉≈〈V r B r〉, namely, conservation of reconnection flux along flare loops. For this flare, B t is found to be 120 and 60 G, respectively, during two emission peaks five minutes apart in the impulsive phase. An estimate of the magnetic field in flare loops is also achieved by analyzing the microwave and hard X-ray spectral observations, yielding B=250 and 120 G at the two emission peaks, respectively. The measured B from the microwave spectrum is an appropriately-weighted value of magnetic field from the loop top to the loop leg. Therefore, the two methods to evaluate coronal magnetic field in flaring loops produce fully-consistent results in this event.  相似文献   

5.
Twenty-seven typical binary systems have been investigated to study their power-output by gravitational radiation (P B ) and spiralling time (0) relation. It was found that these binary systems form two distinct groups. New relations have been given betweenP B and 0 for each group.  相似文献   

6.
The magnetorotational instability (MRI) of differential rotation under the simultaneous presence of axial and azimuthal components of the (current‐free) magnetic field is considered. For rotation with uniform specific angular momentum the MHD equations for axisymmetric perturbations are solved in a local short‐wave approximation. All the solutions are overstable for Bz · Bϕ ≠ 0 with eigenfrequencies approaching the viscous frequency. For more flat rotation laws the results of the local approximation do not comply with the results of a global calculation of the MHD instability of Taylor‐Couette flows between rotating cylinders. – With Bϕ and Bz of the same order the traveling‐mode solutions are also prefered for flat rotation laws such as the quasi‐Kepler rotation. For magnetic Prandtl number Pm 0 they scale with the Reynolds number of rotation rather than with the magnetic Reynolds number (as for standard MRI) so that they can easily be realized in MHD laboratory experiments. – Regarding the nonaxisymmetric modes one finds a remarkable influence of the ratio Bϕ/Bz only for the extrema. For Bϕ ≫ Bz and for not too small Pm the nonaxisymmetric modes dominate the traveling axisymmetric modes. For standard MRI with Bz ≫ Bϕ, however, the critical Reynolds numbers of the nonaxisymmetric modes exceed the values for the axisymmetric modes by many orders so that they are never prefered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The list of the cooperative photometric observations of the UV Cet-type flare stars that have been organized during the years 1967 to 1971 by the Working Group on Flare Stars of the IAU Commission 27 is given. The completeness and reliability of the data obtained are evaluated by comparing simultaneous observations at different observatories. the statistical analysis of the UV Cet, YZ CMi, EV Lac and AD Leo flares observed in the B-band is carried out. The flare energy spectrum in the energy range where observational selection effects are small is found to be d lnv/d lnE B=–1.4 to –1.9,v is an occurrence of flares with radiation energy ofE B. The total flares' radiation is equal to 1.7%, 1.2%, 0.3% and 0.4% of the quiet radiation in the B-band of the stars listed, and the main part of this total radiation is due to the strongest flares. Distributions of flare rise times (t r) and of rates of flare absolute luminosity increase (d2 E B/dt r 2Ë r) are considered; these parameters of flare are independent statistically for all stars studied. Correlation coefficientsr (E B,t r) andr (E B,r(E B,Ë r)) are rather small except r (E B,t r)=0.86 for the AD Leo flares. Contradictory conclusions on temporal distribution of flares infered by different investigators are noted.  相似文献   

8.
Sinusoidal variations in bothV - andB-bands were detected in some flare stars of the UV Ceti type outside of flares. This detection has confirmed the light variation detection in Johnson'sV -band in EV Lac at quiet-state luminosity by Pettersen (1980) with a cyclic period equals about 4 . d 378 and an amplitude of about 0 . m 07. An interpretation of these short cyclic periods is that they are due to intensity modulations from a photospheric spot group as a result of stellar equatorial rotations. A short period of 14 days with an amplitude of 0 . m 099 was detected inB-band in AD Leo. For the two flare stars, BD+55° 1823 and DO Cep in bothV- andB-bands, cyclic periods of more than 3 days and less than 17 days with amplitudes more than 0 . m 090 and less than 0 . m 250 have been registered. A significant contribution has been found in the flare star EV Lac in bothV- andB-bands at its quiescent-state luminosity where the detected cyclic periods are agreed with that which was detected by Pettersen (1980) in the same flare star in Johnson'sV-band, about 4 days. Furthermore, we found the same cyclic period in the colour index,B - V (about 4 days) which strengthens starspot phenomenon. This colour index period could not be detected by Pettersen (1980).  相似文献   

9.
The monthly probability of occurrence of southward (B z ) component of IMF estimated independent of the sector polarity observed near earth is found to change with the magnitude of solar wind velocity. The above analysis is done for each month during two years around sunspot minima and maxima in cycle 21. The results will be interpreted in terms of association of southwardB z events with solar wind flows of distinct solar origin such as low and high speed solar wind.  相似文献   

10.
Binary systems with their primary and secondary component masses less than 2M have been investigated to evaluate the rate of emission of gravitational energy (P B) and spiralling time (0) for them. In all twenty-two binary systems have been considered. It is found that in spite of the same mass range, these systems form two distinct groups. New relations have been given betweenP B and (0) for each group. For a few eccentric orbit systems the rate of decay of orbital periods due to the loss of energy from the system via gravitational radiation emission has also been given and compared with a short-period binary pulsar.  相似文献   

11.
A new version of the magnetic-tape catalog of ABELL clusters of galaxies is used to obtain redshift estimators and to generate two samples of clusters. A procedure for searching for superclusters of galaxies is applied and the results are given in tabular and graphic form. For a lmited homogeneous sample (distance 60–275 Mpc, galactic latitude B > 35°), 12 multiplets, having member clusters with known redshifts, are found. It is shown that the spatial covariance function for rich clusters has the form ξ = (r0/r)γ with r0 = 22.4 ± 1.8 Mpc and γ = 1.90 ± 0.25 for 3 Mpc ≲ r ≲ 80 Mpc.  相似文献   

12.
The results of a complete UBV photometry in a field of 3.1 square degrees to the limiting magnitude B = 20.0 are given. The number of blue objects (with U — B ≤ — 0.4) per square degree brighter than magnitude B is given by the relation log N = (0.66 ± 0.08) (B — 18) — 0.04±0.07. The percentage of the blue objects is 2% of the total number of stars brighter than magnitude V = 19.5. It is not distinguished between WD and QSO.  相似文献   

13.
An elementary analysis based on Ampére's Law is given to separate the general magnetic field above the photosphere into two parts B=B 1+B *. The field B 1 is a potential field due to electric currents below the photosphere. The field B * is produced by electric currents above the photosphere combined with the induced mirror currents. By symmetry, B * has a set of field lines lying entirely in the plane z = 0 taken to be the photosphere. This set of field lines can be constructed from given vector magnetograph measurements and represents all the information on the electric currents above the photosphere that a magnetograph can provide. Theoretical illustrations are given and the implications for data analysis are discussed.  相似文献   

14.
U. Anzer 《Solar physics》1969,8(1):37-52
In this paper the stability of the Kippenhahn-Schlüter model of solar filaments against arbitrary perturbations is investigated. The problem is treated in the MHD approximation and a modification of the energy principle of Bernstein et al. is used. Two necessary and sufficient stability conditions are found: (a) [B z] dB x/dz 0 and (b) B x d[B z]/dz 0. Condition (a), in the limit of small currents, leads to the condition already discussed by Kippenhahn and Schlüter; condition (b) requires that the current density in the stable filament decreases with height.On leave from the Max-Planck-Institut für Physik und Astrophysik, München, Germany.  相似文献   

15.
To study the quantitative relationship between the brightness of the coronal green line 530.5 nm Fe xiv and the strength of the magnetic field in the corona, we have calculated the cross-correlation of the corresponding synoptic maps for the period 1977 – 2001. The maps of distribution of the green-line brightness I were plotted using every-day monitoring data. The maps of the magnetic field strength B and the tangential B t and radial B r field components at the distance 1.1 R were calculated under potential approximation from the Wilcox Solar Observatory (WSO) photospheric data. It is shown that the correlation I with the field and its components calculated separately for the sunspot formation zone ±30° and the zone 40 – 70° has a cyclic character, the corresponding correlation coefficients in these zones changing in anti-phase. In the sunspot formation zone, all three coefficients are positive and have the greatest values near the cycle minimum decreasing significantly by the maximum. Above 40°, the coefficients are alternating in sign and reach the greatest positive values at the maximum and the greatest negative values, at the minimum of the cycle. It is inferred that the green-line emission in the zone ±30° is mainly controlled by B t, probably due to the existence of low arch systems. In the high-latitude zone, particularly at the minimum of the cycle, an essential influence is exerted by B r, which may be a manifestation of the dominant role of large-scale magnetic fields. Near the activity minimum, when the magnetic field organization is relatively simple, the relation between I and B for the two latitudinal zones under consideration can be represented as a power-law function of the type IB q. In the sunspot formation zone, the power index q is positive and varies from 0.75 to 1.00. In the zone 40 – 70°, it is negative and varies from −0.6 to −0.8. It is found that there is a short time interval approximately at the middle of the ascending branch of the cycle, when the relationship between I and B vanishes. The results obtained are considered in relation to various mechanisms of the corona heating.  相似文献   

16.
Various relations are found between the key parameters of black holes and active galactic nuclei. Some have a statistical property, others follow from the theoretical consideration of the evolution of these objects. In this paper we use a recently discovered empirical relation between the characteristic frequency of quasi-periodic oscillations of radiation ν br of black holes, their masses and matter accretion rates to determine the magnetic field strength B H at the black hole event horizon. Since the characteristic frequency can be determined from observations, the use of a new relation for the estimations of magnetic field B H can yield more definite results, since we are decreasing the number of the unknown or poorly-determined parameters of objects (it especially concerns the accretion rate ). The typical values which we have found are B H ≃ 108G for the stellar mass black holes, and B H ≃ 104G for the supermassive black holes. Besides, we demonstrate that if the linear polarization of an object is caused by the radiation of a magnetized accretion disk, then the degree of observable polarization is pν br −1/2.  相似文献   

17.
It is well known that the parallel cuts of the parallel and perpendicular electric field in electron phase-space holes (electron holes) have bipolar and unipolar structures, respectively. Recently, electron holes in the Earth’s plasma sheet have been observed by THEMIS satellites to have detectable fluctuating magnetic field with regular structures. Du et al. (2011) investigated the evolution of a one-dimensional (1D) electron hole with two-dimensional (2D) electromagnetic particle-in-cell (PIC) simulations in weakly magnetized plasma (Ω e <ω pe , where Ω e and ω pe are the electron gyrofrequency and electron plasma frequency, respectively), which initially exists in the simulation domain. The electron hole is unstable to the transverse instability and broken into several 2D electron holes. They successfully explained the observations by THEMIS satellites based on the generated magnetic structures associated with these 2D electron holes. In this paper, 2D electromagnetic particle-in-cell (PIC) simulations are performed in the xy plane to investigate the nonlinear evolution of the electron two-stream instability in weakly magnetized plasma, where the background magnetic field (B0 = B0[(e)\vec] x)(\mathbf{B}_{0} =B_{0}\vec{\mathbf{e}} _{x}) is along the x direction. Several 2D electron holes are formed during the nonlinear evolution, where the parallel cuts of E x and E y have bipolar and unipolar structures, respectively. Consistent with the results of Du et al. (2011), we found that the current along the z direction is generated by the electric field drift motion of the trapped electrons in the electron holes due to the existence of E y , which produces the fluctuating magnetic field δB x and δB y in the electron holes. The parallel cuts of δB x and δB y in the electron holes have unipolar and bipolar structures, respectively.  相似文献   

18.
Measurements of the north-south (B z component of the interplanetary field as compiled by King (1975) when organized into yearly histograms of the values of ¦B z ¦ reveal the following. (1) The histograms decrease exponentially from a maximum occurrence frequency at the value ¦B z ¦ = 0. (2) The slope of the exponential on a semi-log plot varies systematically roughly in phase with the sunspot number in such a way that the probability of large values of ¦B z ¦ is much greater in the years near sunspot maximum than in the years near sunspot minimum. (3) There is a sparsely populated high-value tail, for which the data are too meager to discern any solar cycle variation. The high-value tail is perhaps associated with travelling interplanetary disturbances. (4) The solar cycle variations of B z and the ordinary indicators of solar activity are roughly correlated. (5) The solar cycle variation of B z is distinctly different than that of the solar wind speed and that of the geomagnetic Ap disturbance index.Now at the Aerospace Corporation, El Segundo, Calif. 90245, U.S.A.  相似文献   

19.
New methods are applied to samples of classical cepheids in the galaxy, the Large Magellanic Cloud, and the Small Magellanic Cloud to determine the interstellar extinction law for the classical cepheids, R B:R V:R I:R J:R H:R K= 4.190:3.190:1.884:0.851:0.501:0.303, the color excesses for classical cepheids in the galaxy, E(B-V)=-0.382-0.168logP+0.766(V-I), and the color excesses for classical cepheids in the LMC and SMC, E(B-V)=-0.374-0.166logP+0.766(V-I). The dependence of the intrinsic color (B-V)0 on the metallicity of classical cepheids is discussed. The intrinsic color (V-I)0 is found to be absolutely independent of the metallicity of classical cepheids. A high precision formula is obtained for calculating the intrinsic colors of classical cepheids in the galaxy: (<B>-<V>)0=0.365(±0.011)+0.328(±0.012)logP.  相似文献   

20.
The photometrically determined mean surface magnetic fields BS need a revision. None of the stars for which BS can be measured directly by Zeeman line splitting fulfils the relation between the photometric parameter Δ(V1G) and the mean surface field BS, which is used by NORTH , CRAMER and MAEDER to determine BS for other B2 – A3 stars. The ratio BeffMax/BS for stars, which define North's relation, shows unreasonable large values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号