首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a result of reductions in sulfate deposition and changing climate, dissolved organic carbon (DOC) concentrations have increased in many lakes situated in forests of northeastern North America and northern Europe since the 1990s. Although this increase is well documented, the associated ecological implications remain unclear. In particular, DOC strongly influences the vertical temperature structure of lakes, with increasing DOC often leading to a shallower epilimnion. We investigated the effect of increased DOC concentrations on lake thermal structure using fossil diatom records from six remote Maine lakes. Sedimentary diatom profiles from three pairs of small (<0.5 km2) lakes were compared, with each pair containing one lake with a documented significant increase in DOC and the other experiencing no change in DOC since the early 1990s. Lake thermal structure was inferred from changes in the relative abundance of Discostella stelligera and Aulacoseira species, two diatom taxa that are associated with changes in thermal stratification. The three lakes without increasing DOC showed no change in diatom-inferred mixing depth over the past few decades. Of the lakes with documented increases in DOC, two showed the highest turnover in diatom community structure over time. Profiles from both of these lakes also indicated directional change in diatom-inferred mixing depth over the past 20 years, but the direction of change differed. This study demonstrates that recent increases in DOC have the potential to alter the physical and biological structure of lakes, but that these responses may differ across lakes.  相似文献   

2.
李治国  芦杰  史本林  李红忠  张延伟  李琳 《地理研究》2015,34(11):2095-2104
采用1:5万地形图、Landsat MSS/TM/ETM+/OLI遥感影像及数字高程模型数据,利用遥感和地理信息系统技术,并结合狮泉河、和田和于田3个气象站点1968-2013年的气温、降水量数据对松木希错流域的冰川、湖泊面积变化及其原因进行分析。结果表明:① 1968-2013年流域冰川面积不断退缩,由139.25 km2减少至137.27±0.02 km2,共减少1.98±0.02 km2,减少百分比为1.42%,2001年以后冰川退缩速度加快;② 1968-2013年松木希错面积不断扩张,由25.05 km2增加至32.62±0.02 km2,共扩张7.57±0.02 km2,扩张百分比为30.22%,且2001年之后扩张速率加快,在年代际上与冰川的退缩具有较好的耦合性;③ 1968-2013年湖面潜在蒸散量减少和降水增加分别是导致湖泊扩张的第一和第二影响因素,而升温引起的冰川、冻土融水增加有一定贡献,但影响较小且在年际尺度上不显著。  相似文献   

3.
The return of hundreds to millions of adult sockeye salmon (Oncorhynchus nerka), which have returned from the ocean to their natal nursery lake environment to spawn, can result in significant nutrient loading. By analyzing sedimentary diatom assemblages from nursery lakes, we demonstrated that a salmon-derived nutrient signal could be traced over time and be used to infer past sockeye salmon population dynamics. We conducted a 2,200 year paleolimnological study of two Alaskan sockeye salmon nursery lakes, Karluk and Frazer lakes. The two lakes are very similar, except that sockeye salmon were only introduced into Frazer Lake in 1951 (first spawners returned in 1956). In both lakes we found a strong correspondence between diatom assemblages and the number of adult salmon spawners recorded in the historical data (40 and 70 years for Frazer and Karluk lakes, respectively). Given this robust relationship, we then used our analyses of diatoms from Karluk Lake over the past 2,200 years to gain insight into salmon-derived nutrient loading changes (which are directly related to the number of sockeye salmon spawners). The diatom record from Karluk Lake recorded dramatic species changes on both decadal and century timescales, and was strongly correlated with an independent indicator of sockeye salmon abundances, 15N. Together, these data suggest pronounced variability in sockeye salmon abundances at Karluk Lake over the past 2,200 years. The direct impacts of regional environmental variability were not likely responsible for the patterns apparent in Karluk Lake, as the diatom and 15N profiles from Frazer Lake were relatively stable prior to the introduction of sockeye salmon. Application of total phosphorus transfer functions to the Karluk and Frazer lakes' diatom records revealed that sockeye salmon carcasses substantially increased the trophic status in these lakes, which has important implications for the health of juvenile salmon that rear in nursery lakes. Overall, this paper illustrates the potential use of diatoms in reconstructing past sockeye salmon population dynamics, which in turn can lead to a greater understanding of the mechanisms influencing abundances of sockeye salmon.  相似文献   

4.
湖泊面积可反映区域气候变化和人类活动等信息。选取1989、1994、1999、2004、2009、2014年Landsat遥感影像数据,采用人工目视解译、ArcGIS空间分析等方法分析毛乌素沙地湖泊面积变化特征,并结合毛乌素周边气象站点气象数据、所在县区统计年鉴数据对湖泊面积变化的影响因素进行分析。结果表明:(1)毛乌素沙地湖泊近30年总体上处于萎缩状态,具体表现为1994年前湖泊面积增加,后持续减小,不同面积等级湖泊变化情况不同;从空间上看,30年间湖泊面积减小明显的湖泊主要在东北部地区,面积增大明显的湖泊主要在西南部地区,中部地区湖泊面积相对稳定;(2)气候变化和人类活动是近30年影响毛乌素沙地湖泊面积的主要因素。2000年前,湖泊面积主要受气温、降水的影响。特别是1989-1994年,湖泊面积变化量在空间上呈现显著的正相关关系;(3)2000年后,随着区域内人类活动的加剧,湖泊面积主要受人类活动的影响,在人类活动的干扰下,湖泊面积变化量在空间上未表现出显著的正相关关系。  相似文献   

5.
Cladocera as indicators of trophic state in Irish lakes   总被引:1,自引:0,他引:1  
We examined the impact of lake trophic state on the taxonomic and functional structure of cladoceran communities and the role of nutrient loading in structuring both cladoceran and diatom communities. Surface sediment assemblages from 33 Irish lakes were analysed along a gradient of total phosphorus concentration (TP; 4.0–142.3 μg l−1), using a variety of statistical approaches including ordination, calibration and variance partitioning. Ordination showed that the taxonomic structure of the cladoceran community displayed the strongest response to changes in lake trophic state, among 17 measured environmental variables. Trophic state variables chlorophyll-a and TP explained about 20% of the variance in both cladoceran and diatom assemblages from a set of 31 lakes. Procrustes analysis also showed significant concordance in the structure of cladoceran and diatom communities (P < 0.001). Thus, lake trophic state affects the taxonomic structure of both primary and secondary producers in our study lakes. We also found a significant decrease in relative abundance of taxa associated with both macrophytes and sediments, or sediments only, along the TP gradient (r = −0.49, P = 0.006, n = 30), as well as an increase in the proportion of the planktonic group (r = 0.43, P = 0.017, n = 30). This suggests that cladoceran community structure may also be shaped by lake trophic state indirectly, by affecting habitat properties. We found no relationship between lake trophic state and the relative abundance of each of three cladoceran groups that display different body size. We compared community structure between bottom and top sediment samples in cores from six Irish lakes. Results revealed similar trajectories of nutrient enrichment over time, as well as a strong shift in cladoceran functional structure in most systems. This study confirms that Cladocera remains in lake sediments are reliable indicators of lake trophic state. This study also highlights the fact that taxonomic and functional structure should both be considered to account for the multiple factors that shape cladoceran communities.  相似文献   

6.
Aquatic macrophytes play a key role in providing habitat, refuge and food for a range of biota in shallow lakes. However, many shallow lakes have experienced declines in macrophyte vegetation in recent decades, principally due to eutrophication. As changes in macrophyte composition and abundance can affect overall ecological structure and function of a lake, an assessment of the timing and nature of such changes is crucial to our understanding of the wider lake ecosystem. In the typical absence of historical plant records, the macro-remains of macrophytes preserved in lake sediments can be used to assess long-term changes in aquatic vegetation. We generated recent (150–200 years) plant macrofossil records for six English lakes subject to conservation protection to define past macrophyte communities, assess trajectories of ecological change and consider the implications of our findings for conservation targets and strategies. The data for all six lakes reveal a diverse submerged macrophyte community, with charophytes as a key component, in the early part of the sedimentary records. The stratigraphies indicate considerable change to the aquatic vegetation over the last two centuries with a general shift towards species more typically associated with eutrophic conditions. A common feature is the decline in abundance of low-growing charophytes and an increase in tall canopy-forming angiosperms such as fine-leaved Potamogeton species, Zannichellia palustris and Callitriche species. We hypothesise, based on findings from long-term datasets and palaeoecological records from enriched shallow lakes where plants are now absent, that the observed shifts provide a warning to managers that the lakes are on a pathway to complete macrophyte loss such that nutrient load reduction is urgently needed. It is the sound understanding of present-day plant ecology that affords such reliable interpretation of the fossil data which, in turn, provide valuable context for current conservation decisions.  相似文献   

7.
The water chemistry of lake systems on the edge of the Antarctic continent responds quickly to changes in the moisture balance. This is expressed as increasing salinity and decreasing lake water level during dry periods, and the opposite during wet periods. The diatom composition of the lakes also changes with these fluctuations in salinity and lake water depth. This is important, as their siliceous remains become incorporated into lake sediments and can provide long-term records of past salinity using transfer functions. In order to develop transfer functions, diatoms and water chemistry data were inter-calibrated from five different East Antarctic oases, namely the Larsemann Hills, the Bølingen Islands, the Vestfold Hills, the Rauer Islands and the Windmill Islands. Results indicate that salinity is the most important environmental variable explaining the variance in the diatom flora in East Antarctic lakes. In oligo- saline lakes the variance is mainly explained by lake water depth. This dataset was used to construct a weighted averaging transfer function for salinity in order to infer historical changes in the moisture balance. This model has a jack-knifed r2 of 0.83 and a RMSEP of 0.31. The disadvantage of this transfer function is that salinity changes in oligo-saline lakes are reconstructed inaccurately due to the edge effect and due to the low species turnover along the salinity gradient at its lower end. In order to infer changes in the moisture balance in these lakes, a second transfer function using weighted averaging partial least squares (with two components) for depth was constructed. This model has a jack-knifed r2 of 0.76 and a RMSEP of 0.22. Both transfer functions can be used to infer climate driven changes in the moisture balance in lake sediment cores from oligo-, hypo-, meso- and hyper-saline lakes in East Antarctic oases between 102–75°E. The transfer function for lake water depth is promising to track trends in the moisture balance of small freshwater lakes, where changes in shallow and deep-water sediments are readily reflected in changing diatom composition.  相似文献   

8.
The synergistic influence of multiple environmental stressors on lake ecosystems has typically been evaluated paleolimnologically, through examination of a single biological indicator. Aquatic organisms, however, may display heterogeneous responses because of differences in their ecological sensitivity, and/or because of ecological consequences caused by strong interactions among multiple stressors. We applied paleolimnological methods to compare patterns of algal and invertebrate response to multiple stressors in a large, shallow lake in southwest China over the last two centuries. Our multi-proxy records show a clear trajectory of lake eutrophication (greater total nitrogen) and increasing lake productivity (greater sediment Chlorophyll-a concentration) during the last century. Nutrient enrichment and lake productivity played significant, but different roles, in structuring diatom and cladoceran assemblages, accounting for 31.4 and 77.3% of the total variance in the communities, respectively. Furthermore, there was a pronounced influx of the endemic diatom species Cyclotella rhomboideo-elliptica Skuja, which was strongly associated with the second axis of a diatom PCA (Principal Component Analysis). This occurred synchronously with a documented reversal of hydrological connectivity with a downstream, nutrient-poor lake during the early twentieth century, suggesting a role for species dispersal in modulating community reorganization. There are also strong differences between the two organism groups in their sensitivity to hydrological fluctuations, as hydrodynamics, indicated by sand content, was a significant driver for cladocerans (>25%), but showed only minor influence on diatom assemblages in our selection of minimum adequate models. The proportion of the total variance explained by our measured variables (<30%) was much lower for diatom assemblages than for both cladoceran assemblage and accumulation data (~77%), reflecting differences in community reorganization between the two biological indicators. The sediment-based evaluation of community responses revealed the differential impact of eutrophication and hydrological fluctuations on the biota of this large, shallow lake. Therefore, multiple biological indicators should be evaluated in limnological surveys to assess the full scope of ecological changes in highly stressed lake systems targeted for conservation or restoration.  相似文献   

9.
Cladocerans are valuable indicators of environmental change in lakes. Their fossils provide information on past changes in lake environments. However, few studies have quantitatively examined the relationships between contemporary and sub-fossil cladoceran assemblages and no investigations are available from Mediterranean lakes where salinity, eutrophication and top-down control of large-bodied cladocerans are known to be important. Here we compared contemporary Cladocera assemblages, sampled in summer, from both littoral and pelagic zones, with their sub-fossil remains from surface sediment samples from 40 Turkish, mainly shallow, lakes. A total of 20 and 27 taxa were recorded in the contemporary and surface sediment samples, respectively. Procrustes rotation was applied to both the principal components analysis (PCA) and redundancy analysis (RDA) ordinations in order to explore the relationship between the cladoceran community and the environmental variables. Procrustes rotation analysis based on PCA showed a significant accord between both littoral and combined pelagic–littoral contemporary and sedimentary assemblages. RDA ordinations indicated that a similar proportion of variance was explained by environmental variation for the contemporary and fossil Cladocera data. Total phosphorus and salinity were significant explanatory variables for the contemporary assemblage, whereas salinity emerged as the only significant variable for the sedimentary assemblage. The residuals from the Procrustes rotation identified a number of lakes with a high degree of dissimilarity between modern and sub-fossil assemblages. Analysis showed that high salinity, deep water and high macrophyte abundance were linked to a lower accord between contemporary and sedimentary assemblages. This low accord was, generally the result of poor representation of some salinity tolerant, pelagic and macrophyte-associated taxa in the contemporary samples. This study provides further confirmation that there is a robust relationship between samples of modern cladoceran assemblages and their sedimentary remains. Thus, sub-fossil cladoceran assemblages from sediment cores can be used with confidence to track long-term changes in this environmentally sensitive group and in Mediterranean lakes, subjected to large inter-annual variation in water level, salinity and nutrients.  相似文献   

10.
We examined long-term relationships between Cladocera and limnogeological and climate variables in a late Holocene lake sediment sequence to assess cladoceran responses to climate change and reconstruct past climate variations in southern Finland, near the Baltic Sea coast. Elemental composition, organic matter, and inferred water quality variables were used to constrain paleoenvironmental (until 4500 cal BP) conditions and human impact. Fossil Cladocera assemblages, ephippia, and body size trends were utilized to estimate mean July air temperature (T Jul) variability, open-water season length, and water-temperature regimes. Results revealed stable cladoceran communities, dominated by Eubosmina, until 500 cal BP, followed by major assemblage changes including increases in Chydorus cf. sphaericus, Alonella spp., and Bosmina longirostris. Pb and Cu concentrations were associated temporally with increasing human impact and warming climate during the past few centuries, and were the most significant factors in explaining cladoceran community changes, based on redundancy analysis. A Cladocera-based T Jul reconstruction estimated elevated temperatures for the end of the Holocene Thermal Maximum, a cooler period during ~3000–2000 cal BP, slightly increased temperatures during 1200–800 cal BP corresponding to the Medieval Climate Anomaly (MCA), and lower temperatures during the Little Ice Age (LIA), 800–200 cal BP. The reconstruction also suggests that significant climate warming took place during the twentieth century. Cladocerans mostly associated with warm periods included B. longirostris and Pleuroxus uncinatus, whereas Alona affinis, A. quadrangularis, and C. cf. sphaericus were associated with colder climate. Compared to a reference Chironomidae-inferred T Jul reconstruction from the same region, discrepancies were apparent in amplitude of temperature change, as the temperature variability in the cladoceran-based record was muted until ~200 cal BP. During the LIA, increased ephippia and body size agreed with the temperature reconstruction, but suggested a severely shorter open-water season and reduced water temperatures compared to the preceding late Holocene episodes, even though the cladoceran T Jul showed quite similar temperatures for these periods. Our results suggest that fossil cladoceran assemblages, ephippia, and morphological attributes respond sensitively to long-term climate fluctuations and this record reflects well the major climate events of the late Holocene and provides realistic paleoclimatic estimates for maritime southern Finland.  相似文献   

11.
Changes in macrophyte communities have occurred over the past decades in many oligotrophic softwater lakes with low carbon availability. Slow-growing isoetid species have been replaced by faster-growing elodeid species. Commonly, these changes are explained by anthropogenic nutrient enrichment or acidification of the lake water. Here we present a multi-proxy study in which we analysed plant macrofossils, pollen and spores, as well as sedimentological data from several cores taken from a SW Norwegian softwater lake. Our results indicate that the elodeid macrophyte Callitriche hamulata first appeared in this lake in the 1970s. Proliferation of C. hamulata occurred in the 1990s, replacing the hitherto dominant submerged Isoëtes macrophyte vegetation. Independent lines of evidence, such as diatom-inferred TP and pH reconstructions, showed no change during the past 200 years, therefore ruling out both acidification and phosphorus enrichment of the lake as possible causes for the observed change in the macrophyte community. Alternatively, expansion of Callitriche at the expense of Isoëtes may have been related to increased aquatic carbon availability, although nitrogen enrichment may also have been important.  相似文献   

12.
Aqueous calcium (Ca) concentrations are currently decreasing in many softwater lakes on the Boreal Shield. As the onset of these declines often pre-date direct monitoring programs, indirect techniques are required to examine the impacts of reduced Ca availability on aquatic communities with relatively high Ca demands such as the Cladocera (Class: Branchiopoda). Among the Cladocera, the family Daphniidae has been identified as a taxonomic group potentially useful for inferring past Ca concentrations due to their high Ca demands and preservation in lake sediments. Here, we use a ??top/bottom?? paleolimnological analysis to compare present-day cladoceran communities preserved in the surface sediments of 36 softwater lakes in south-central Ontario, Canada, which are potentially vulnerable to Ca decline (i.e. small headwater systems with present-day lakewater [Ca]?<?3?mg?L?1), with the communities present in lake sediments deposited prior to the onset of regional acid deposition. To distinguish the potential impacts of lake acidification from those of Ca availability (as Ca and pH trends are strongly correlated in this region), the study lakes were chosen to be evenly distributed about a present-day lakewater pH of 6 and Ca concentration of 1.5?mg?L?1 (threshold values). Despite the importance of pH as an explanatory variable for the present-day assemblages, a comparison of the sedimentary remains from the two time periods indicate there have been large declines since pre-industrial times in the relative abundances of Ca-rich Daphnia spp. (particularly of the Daphnia longispina species complex), regardless of present-day pH, accompanied by increases in the Ca-poor species Holopedium glacialis. These observations suggest that recent declines in Ca concentration may have already fallen below baseline conditions, with marked implications for ecosystem function due to the differential responses among cladoceran taxa.  相似文献   

13.
Late Quaternary environments have been studied by pollen analysis of lake sediments from the savannas of the Colombian Llanos Orientales at 180 m elevation. The pollen record form Laguna El Pinal (4°08N, 70°23W), dated by 6 AMS radiocarbon dates, starts at 18,290 14C yr B.P. The record from Laguna Carimagua (4°04N, 70°14W), also dated by 6 AMS dates, starts at 8270 14C yr B.P. Both records show a landscape dominated by grassland savanna with only few woody savanna taxa, such as Curatella and Byrsonima, frequent fires, and little occurrence of forest and/or gallery forest along the rivers. The savanna ecosystem at the studied sites was relatively stable during the last 18,000 yrs, but minor changes in floral composition, and in the proportion of savanna/forest, have been recorded. Very little gallery forest and the non permanent lake conditions of Laguna El Pinal reflect the driest period, interpreted to reflect low rainfall rates and long dry seasons during the Last Glacial Maximum until 10,690 14 C yr B.P. During the Late Glacial, Laguna El Pinal was a permanent shallow lake, and changed into a lake with higher water levels during the Holocene, indicating wetter conditions. Expansion of regional gallery forest also started at around 10,690 14C yr B.P. Little vegetational change observed in Laguna Carimagua at 5570 14 C yr B.P., in combination with a simultaneous decrease of savanna observed in previously studied lakes, suggest a change to regional wetter conditions. Thus, the Holocene before 5500 14 C yr B.P. was somewhat drier than the following period until about 3850 14C yr B.P. In both records, Late Holocene lake deposits are incomplete. Shore vegetation of Laguna Carimagua always included a minor contribution of the palms Mauritia and Mauritiella. The marked increase of palms during the last c. 3800 yrs points to increased human impact on the vegetation under the wettest Holocene climate regime.  相似文献   

14.
The late Quaternary diatom records from alpine Opabin Lake (altitude 2285 m a.s.l.) and sub-alpine Mary Lake (altitude 2054 m a.s.l.), located in Yoho National Park, British Columbia (lat. 51 ° 21N; long. 116 ° 20), have been analyzed, and changes in these records have been used to reconstruct lake histories. The results have also been related to independently inferred vegetation and climate changes. Following deglaciation, when both lakes were receiving high inputs of clastic materials, benthic diatom taxa dominate the records of these two shallow lakes with small species ofFragilaria being particularly prominent. During the early to mid-Holocene period, when treeline was at a higher elevation than today, the diatom flora of both lakes became more diverse with previously minor species becoming more prominent.Cyclotella radiosa occurs in cores from both Mary Lake, and much deeper, neighbouring Lake O'Hara during the warm early Holocene, and may reflect this warmer climate, a longer ice-free season than presently, and perhaps less turbid water, or its presence may reflect a subtly higher nutrient status of the lake water during this period. The Neoglacial is marked by increased amounts of sediments originating from glacial sources in Opabin Lake, which undoubtedly led to very turbid water, and by the presence ofEllerbeckia arenaria f.teres andCampylodiscus noricus v.hibernica in Opabin Lake; however, these species are absent from Mary Lake which has not been influenced by either glacial activity since the recession of the glaciers prior toc. 10 000 years BP or water originating from Opabin Lake. The impact of the two tephras during the Holocene was dramatic in terms of increased diatom production, as exemplified by the increases in diatom numbers, but there was little effect upon species composition. The diatom records and changes in the diatom:cyst ratio suggest that the chemical status of these two small, shallow lakes has changed little during the Holocene, other than after deposition of the two tephras. These results provide evidence that shallow alpine and high sub-alpine lakes are sensitive recorders of past environmental changes.  相似文献   

15.
青藏高原位于中国西南部、亚洲中部,平均海拔高程大于4000 m,面积约300万km2,是“世界屋脊”,与周边地区一起常被称为地球的“第三极”。青藏高原分布着约1200个面积大于1 km2的湖泊,占中国湖泊数量与面积的一半;同时也是黄河、长江、恒河、印度河等大河的源头,被称为“亚洲水塔”。近几十年来,在全球变暖的背景下,青藏高原升温更加突出,其能量与水循环发生了显著变化,气候趋于暖湿化,冰川加速消融,湖面水位上升。湖泊是气候变化的重要指标,青藏高原湖泊分布密集、人为活动影响较小,多源遥感数据的广泛应用,为监测高原湖泊变化提供了难得的契机。本文依托国家自然科学基金青年项目“基于多源遥感的青藏高原内流区湖泊水量变化及水体相态转换研究(2000-2009年)”,主要研究进展为:初步查明了西藏高原的湖泊数量、面积及水位变化与时空格局,以及湖泊水量变化与水量平衡;探讨了湖泊变化对气候变化的响应。目前对青藏高原湖泊的变化及驱动因素虽有一些认识,但其定量的水量平衡及驱动机制还有待于进一步研究。这对了解世界第三极、一带一路国家和地区水资源状况与变化、生态文明和生态安全屏障建设具有重要的意义,同时也可为第三极国家公园的建立提供重要的科学基础。  相似文献   

16.
The recent environmental history of Lake Lappajärvi in western Finland (63°00 N, 23°30 E, area 149 km2), a humic, brown water lake with an average phosphorus content of ca. 20 g l–1, was studied from short core sediment samples taken from the two main basins of the lake. Based on the stratigraphy of diatoms and chironomids and the sediment quality it was possible to distinguish four developmental stages during the past century: (1) a pre-industrial stage covering the time up to about 1935; (2) a stage of increasing nutrient loading (ca. 1936–1960); (3) a stage of pronounced erosion from lake level regulation and extensive ditching of the catchment area (ca. 1960–1970); and (4) a meso-eutrophic stage from ca. 1970 onwards.Acidophilous Aulacoseira distans coll. and other species typical of dystrophic, nutrient-poor lakes characterized the diatom assemblages during the first stage, and the profundal zoobenthic assemblages, characterized by Heterotrissocladius subpilosus and Micropsectra, indicated good hypolimnetic oxygen conditions and a low sedimentation of organic matter (approx. less than 50 g m–2 a–1). The increased loading rapidly led to changes both in diatoms and chironomids (e.g., to an early extinction of H. subpilosus in the 1950s). The process finally led to eutrophication with a successive proliferation of diatom species such as Asterionella formosa followed by Aulacoseira ambigua, Fragilaria crotonensis, and finally Melosira varians. The relative proportion of alkaliphilous species reached a maximum in the final stage and the original profundal chironomid fauna was replaced by Chironomus anthracinus gr. and C. plumosus which are typical of profundal areas suffering from temporal oxygen deficit. It is notable that the considerable decrease in waste water loading from the point sources (80–86% ) during the past two decades has not led to a recovery in the lake. This highlights the importance of diffuse loading from agriculture, forestry and other human activities even to this comparatively large lake.  相似文献   

17.
Eighteen lakes were added to a published training set of 46 British Columbia (BC) lakes in order to expand the original range of total phosphorus (TP) concentrations. Canonical correspondence analysis (CCA) was used to analyze the relationship between diatom assemblages and environmental variables. Specific conductivity and [TP] each explained significant (P0.05) directions of variance in the distribution of the diatoms. The relationship between diatom assemblages and [TP] was sufficiently strong to warrant the development of a weighted-averaging (WA) regression and calibration model that can be used to infer past trophic status from fossil diatom assemblages.The relationship between observed and inferred [TP] was not improved by the addition of more eutrophic lakes, however the [TP] range and the number of taxa used in the transfer function are now superior to the original model. Diatom species assemblages changed very little in lakes with TP concentrations greater than 85 µg 1–1, so we document the development of a model containing lakes with TP85 µg 1–1. The updated model uses 59 training lakes and covers a range of species optima from 6 to 41.9 µg 1–1 TP, and a total of 150 diatom taxa.The updated inference model provided a more realistic reconstruction of the anthropogenic history of a highly eutrophic BC lake. The model can now be used to infer past nutrient conditions in other BC lakes in order to assess changes in trophic status.  相似文献   

18.
Shallow lakes are among the most threatened ecosystems in the world and many contemporary studies have demonstrated declines in biodiversity due to anthropogenic forcing. Mostly, however, these studies have not covered the full period of human-induced diversity change in lakes which is typically over decades-centuries. Here we provide two examples of palaeoecological studies focussed on reconstructing biodiversity changes in contrasting shallow lake environments that demonstrate the efficacy of the approach—a shallow UK lake and a suite of floodplain lakes (called billabongs) in the Murray-Darling basin, Australia. In the Murray-Darling billabongs, complex sedimentary processes operate, sediment chronologies are less certain and replication of sites is needed to confirm patterns. The combination of sediment records from 10 billabongs showed that diatom diversity changes pre- and post-European (>1850) disturbance were inconsistent; however, reductions in diversity were more common and appear to reflect reductions in macrophyte abundance. At Felbrigg Lake, a multi-proxy study with strong chronological control demonstrated divergent responses of macrophyte, diatom, cladoceran and chironomid richness and diversity to a century of eutrophication. Eutrophication of the site was qualitatively inferred from changes in the macrophyte community in turn reconstructed from plant macrofossils. Benthic cladocerans showed a consistent decline in richness through the record, reflecting the gradual reduction in their macrophyte associated habitat over the past century. Diatom richness and diversity responses were complex, with increases in diversity and richness linked to both increases and decreases in macrophyte species richness and abundance. Chironomid richness and diversity patterns were less consistently linked to eutrophication. The loss of the dominant zooplanktivore (perch) in the 1970s was reflected in the richness and diversity profiles for all groups. Our study reveals clear potential for using sediment cores to infer biodiversity change in shallow lakes and shallow lake regions. However, given the contrasting patterns of diversity change for the different biological groups both in Felbrigg Lake and between Felbrigg and the billabongs, caution is required when interpreting whole-ecosystem biodiversity changes (or the absence of change) based on single as opposed to multi-proxy studies.  相似文献   

19.
Subfossil Cladocera were sampled and examined from the surface sediments of 35 thermokarst lakes along a temperature gradient crossing the tree line in the Anabar-river basin in northwestern Yakutia, northeastern Siberia. The lakes were distributed through three environmental zones: typical tundra, southern tundra and forest tundra. All lakes were situated within the continuous permafrost zone. Our investigation showed that the cladoceran communities in the lakes of the Anabar region are diverse and abundant, as reflected by taxonomic richness, and high diversity and evenness indices (H = 1.89 ± 0.51; I = 0.8 ± 0.18). CONISS cluster analysis indicated that the cladoceran communities in the three ecological zones (typical tundra, southern tundra and forest-tundra) differed in their taxonomic composition and structure. Differences in the cladoceran assemblages were related to limnological features and geographical position, vegetation type, climate and water chemistry. The constrained redundancy analysis indicated that TJuly, water depth and both sulphate (SO4 2?) and silica (Si4+) concentrations significantly (p ≤ 0.05) explained variance in the cladoceran assemblage. TJuly featured the highest percentage (17.4 %) of explained variance in the distribution of subfossil Cladocera. One of the most significant changes in the structure of the cladoceran communities in the investigated transect was the replacement of closely related species along the latitudinal and vegetation gradient. The results demonstrate the potential for a regional cladoceran-based temperature model for the Arctic regions of Russia, and for and Yakutia in particular.  相似文献   

20.
Several limnological and paleolimnological investigations have linked enhanced atmospheric nitrogen (N) deposition to nutrient enrichment and increased primary production. The Athabasca Oil Sands Region (AOSR) in northeast Alberta, Canada is a significant source of N emissions, particularly since development intensified during the 1990s, and recent paleolimnological investigations provide evidence of increased lake production in adjacent areas subject to enhanced N deposition. The AOSR, however, has also experienced atmospheric warming since ca. AD 1900, and therefore the relative effects of nutrient deposition and climate changes on lake production remain unclear. We undertook a factorial-design paleolimnological assessment of 16 lakes in northwest Saskatchewan to quantify changes in abundance and species composition of scaled chrysophytes over the past 100 years. Study sites included both N-limited and P-limited lakes within control regions, as well as lakes that receive enhanced N deposition from the AOSR. We hypothesized that a change in algal communities within N-limited AOSR-impacted lakes, without concurrent changes in the other lake groups, would suggest AOSR-derived N as a driver of enhanced primary production. Instead, marked increases in concentrations of scaled chrysophytes, mainly Mallomonas crassisquama, occurred in the recent sediments in cores from all four lake groups (N-limited vs. P-limited, impacted vs. control), suggesting that regional climate change rather than N deposition was the paramount process enhancing chrysophyte production. Because chrysophyte abundances tended to be higher in deep, lower-pH lakes, and chrysophyte time series were fit best by lake-specific generalized additive models, we infer that climate effects may have been mediated by additional catchment and/or lake-specific processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号