共查询到17条相似文献,搜索用时 93 毫秒
1.
集合卡尔曼滤波同化多普勒雷达资料的数值试验 总被引:25,自引:10,他引:25
利用集合卡尔曼滤波(EnKF)在云数值模式中同化模拟多普勒雷达资料,并考察了不同条件下EnKF同化方法的性能.结果显示,经过几个同化周期后,EnKF分析结果非常接近真值.单多普勒雷达资料EnKF同化对雷达位置不太敏感,双雷达资料同化结果在同化的初期阶段比单雷达资料同化结果准确.同化由反射率导出的雨水比直接同化反射率资料更有效,联合同化径向速度和雨水有利于提高同化分析效果.协方差对EnKF同化效果起着非常重要的作用,考虑模式全部预报变量与径向速度协方差的同化效果比仅考虑速度场与径向速度协方差的同化效果好.雷达资料缺值降低了同化效果,此时增加地面常规观测资料的同化可以明显提高同化分析效果.EnKF同化技术对雷达观测资料误差不太敏感.初始集合对同化分析有较大影响.EnKF同化受集合大小和观测资料影响半径.同化对模式误差较敏感.利用EnKF同化双多普勒雷达资料,分析了一次梅雨锋暴雨过程的中尺度结构.结果表明,EnKF同化技术能够从双多普勒雷达资料反演暴雨中尺度系统的动力场、热力场和微物理场,反演的风场是较准确的,反演的热力场和微物理场分布也是基本合理的.中低层切变线是此次暴雨的主要动力特征,对流云表现为低层辐合、高层辐散并有垂直上升运动伴随,其热力特征表现为低层是低压区,高层为高压区,中部为暖区而上、下部为冷区,水汽、云水和雨水分别集中在对流云体内、上升气流区和强回波区. 相似文献
2.
时间扩展取样集合卡尔曼滤波同化模拟探空试验研究 总被引:2,自引:0,他引:2
目前,集合卡尔曼滤波同化预报循环系统主要的计算量和时间都花费在样本成员的预报上,小样本数虽能减少计算量,但样本数过少,特别是当有模式误差时,又会导致滤波发散。为了提高集合卡尔曼滤波同化预报循环系统的效率并减轻滤波发散等问题,开展了基于WRF的时间扩展取样集合卡尔曼滤波同化模拟探空的试验研究,以考察其在中尺度模式中的同化效果。预报时对一组样本数为Nb的样本,不仅在分析时刻取样,同时也在分析时刻前和后每间隔Δt时间进行M次取样,即在没增加预报样本数的情况下,增加了分析样本成员数(Nb+2M×Nb),从而在保证不降低分析精度的前提下,也达到减小集合卡尔曼滤波的计算量的要求。通过一系列试验来检验时间扩展取样的时间间隔Δt及在分析时刻前和后最大取样次数M对同化结果的影响。试验结果表明,当选择合适的Δt和M时,时间扩展集合卡尔曼滤波的同化效果非常接近于样本数为(1+2M)×Nb的传统集合卡尔曼滤波效果,具有一定的可行性。 相似文献
3.
集合卡尔曼滤波同化多普勒雷达资料的观测系统模拟试验 总被引:3,自引:1,他引:3
本文将集合卡尔曼滤波同化技术应用到对流尺度系统中,实施了基于WRF模式的同化单部多普勒雷达径向风和反射率因子的观测系统模拟试验,验证了其在对流尺度中应用的可行性和有效性,并对同化系统的特性进行了探讨。试验表明:WRF-EnKF雷达资料同化系统能较准确分析模式风暴的流场、热力场、微物理量场的细致特征;几乎所有变量的预报和分析误差经过同化循环后都能显著下降,同化分析基本上能使预报场在各层上都有所改进,对预报场误差较大层次的更正更为显著;约8个同化循环后,EnKF能在雷达反射率、径向风观测与背景场间建立较可靠的相关关系,使模式各变量场能被准确分析更新,背景场误差协方差在水平方向和垂直方向都有着复杂的结构,是高度非均匀、各项异性和流依赖的;集合平均分析场做的确定性预报在短时间内能较好保持真值场风暴的细节结构,但预报误差增长较快。 相似文献
4.
GRAPES集合卡尔曼滤波资料同化系统Ⅰ:系统设计及初步试验 总被引:5,自引:0,他引:5
集合卡尔曼滤波资料同化方法,可以用集合样本统计出随天气形势变化的误差协方差,是当前资料同化领域的研究热点。主要介绍了GRAPES集合卡尔曼滤波资料同化系统的设计以及初步的试验结果。针对集合卡尔曼滤波同化实际观测资料难以实施的问题,采用成批观测同化的顺序同化方法进行多变量的集合卡尔曼滤波同化;为了滤除有限集合数造成的误差相关噪音和缓解求逆矩阵不满秩的问题,在水平和垂直方向都采用了Schur滤波;建立了与GRAPES预报模式的垂直坐标和预报变量一致的模式面集合卡尔曼滤波系统;集合样本的生成考虑了模式变量的空间相关和模式变量之间的相关,通过利用三维变分分析中的控制变量变换得到模式变量扰动场。通过比较GRAPES集合卡尔曼滤波资料同化系统和GRAPES区域三维变分资料同化系统的单点观测资料同化分析结果,对比背景误差相关系数的分布,验证了GRAPES集合卡尔曼滤波系统的正确性。此外,同化区域探空观测资料试验结果表明,GRAPES集合卡尔曼滤波资料同化系统能够得到合理的分析,并且具有实际运行能力。对分析结果进行12h预报表明,GRAPES集合卡尔曼滤波资料同化系统的分析协调性不如三维变分资料同化系统。 相似文献
5.
GRAPES集合卡尔曼滤波资料同化系统Ⅱ:区域分析及集合预报 总被引:2,自引:0,他引:2
GRAPES集合卡尔曼滤波资料同化方法能够分批同化常规观测资料,GRAPES集合卡尔曼滤波同化系统的设计及其与GRAPES三维变分同化系统的对比试验结果表明,GRAPES集合卡尔曼滤波系统能够得到合理的分析,并且具有实际运行能力。在此基础上,进行集合卡尔曼滤波区域同化分析及集合预报试验,对比区域模式面三维变分同化分析预报结果,研究表明,集合卡尔曼滤波分析比三维变分分析具有一定优势,降水预报更接近实况。考察了预报误差特征随天气形势的变化情况,表明预报误差相关场和均方差的分布随着天气形式不同而变化。 相似文献
6.
基于2016年8月28日至9月2日在北京市宝联站、朝阳站、大兴站获得的逐3 h加密探空资料,利用WRF V3.9.1模式和WRF-3DVar系统,对北京地区大气边界层进行数值模拟试验,研究加密探空资料同化对边界层数值模拟的影响。结果表明:同化形成的分析场较背景场更接近观测值,更能表现边界层内真实大气的热力、湿度状态及动力特征。位温、比湿、纬向风、经向风、风速分析场的均方根误差分别较背景场的减少了86%、59%、24%、44%、19%,体现出同化的较强修正作用。加密探空资料同化的预报效果在模式积分6 h内最好,之后同化作用的大小及范围逐渐减弱。加密探空资料同化对边界层内大气湿度状态在整个预报时段内均有改进,对边界层内大气热力状态的改进持续6 h,对于边界层内大气动力特征的改进,纬向风改进较多,经向风和风速不明显,这与风的自身属性、北京市的复杂地形有关。另外,加密探空资料的站点数在空间水平方向上比较少也是导致同化在分析场的改善作用明显但是效果难以持续较长时间的原因之一。 相似文献
7.
集合卡尔曼滤波数据同化在一维波动方程中的应用 总被引:3,自引:0,他引:3
简要回顾了集合卡尔曼滤波(EnKF:Ensemble Kalman Filter)数据同化方法的发展历史,并介绍了EnKF数据同化方法的基本原理,利用一维非线性波动方程进行了数值试验。EnKF数据同化方法的实现过程简单可行。避免了EKF中协方差演变方程预报过程中出现的计算不准确和关于协方差矩阵的大量数据的存储问题,最主要的是EnKF可以有效控制模式变量估计误差方差的增长,改善预报效果。 相似文献
8.
基于WRF中尺度模式,采用集合卡尔曼滤波方法同化中国岸基多普勒天气雷达径向速度资料,对2015年登陆台风彩虹(1522)进行数值试验。从台风强度、路径、结构等方面验证了同化效果,并对不同区域雷达观测资料的同化敏感性进行讨论。试验结果表明:在同化窗内同化分析场台风位置误差相比未同化平均减小15 km,最多时刻减小38 km,同化资料时次越多,确定性预报路径误差越小。同化雷达资料后较好地反映出台风彩虹(1522)近海加强过程,台风中心最低气压同化分析和预报误差相比未同化最大减小超过25 hPa,台风眼的尺度、眼墙处对流非对称结构相比未同化与观测更加接近。试验还表明:台风内核100 km范围内的雷达观测对同化效果影响最大,仅同化这部分资料(约占总量的20%)各方面效果与同化全部资料相近,而仅同化100 km以外资料效果明显不及同化所有资料。仅同化台风内核雷达观测资料可以在不影响同化效果的前提下,使集合同化计算机时减小为原来的1/3,该策略可为台风实际业务预报提供一定参考。 相似文献
9.
基于集合卡尔曼滤波的土壤水分同化试验 总被引:20,自引:2,他引:20
集合卡尔曼滤波是由大气数据同化发展的新的顺序同化算法,它利用蒙特卡罗方法计算背景场的误差协方差矩阵,克服了卡尔曼滤波需要线性化的模型算子和观测算子的难点。我们发展了一个基于集合卡尔曼滤波和简单生物圈模型(SiB2,Simple Biosphere Model)的单点陆面数据同化方案。利用1998年7月6日至8月9日青藏高原GAME-Tibet实验区MS3608站点的观测数据进行了同化试验。结果表明,利用集合卡尔曼滤波的数据同化方法可以明显地提高表层、根区、深层土壤水分的估算精度。 相似文献
10.
针对对流尺度集合卡尔曼滤波(EnKF)雷达资料同化中雷达位置对同化的影响进行研究。为了考察强对流出现在雷达不同方位时集合卡尔曼滤波同化雷达资料的能力,以一个理想风暴为例,设计了8个均匀分布在模拟区域周围的模拟雷达进行试验。单雷达同化试验中,初期同化对雷达位置较敏感,而十几个循环后对雷达方位的敏感性降低。造成初期同化效果较差的雷达观测位于模拟区域正南和正北方向,这两部雷达与模拟区域中心的连线垂直于风暴移动方向(即环境气流的方向)。双雷达试验的结果表明,正东、正南、正西和正北方向的雷达组合观测会使同化初期误差较大,这说明并不是所有与风暴连线成90°的雷达组合都能在短时同化中得到合理的分析结果,还需要都处于模拟区域对角线上(即与环境气流成45°夹角),同化效果才较好。短时同化后的确定性预报结果表明,较大分析误差也会导致较大预报误差。这些分析误差主要是由于同化初期不准确的集合平均场驱动出的不合理的背景误差协方差造成的。当背景场随着同化循环得到改进后,驱动出的合理的背景误差协方差使得不同位置雷达同化造成的差异逐步减小。基于上述结果,引入迭代集合均方根滤波(iEnSRF)算法,结果显示使用该算法后,雷达位置对同化效果的影响减小,同化不同位置的雷达资料均能有效降低分析和预报误差。 相似文献
11.
12.
集合Kalman滤波资料同化技术及研究现状 总被引:7,自引:1,他引:7
针对国内集合Kalman滤波资料同化领域的研究空白,对该技术的背景、理论、优势以及存在的问题做了简要描述,对目前国际上的主要研究成果做了介绍,并给出了该方法可能的发展方向。 相似文献
13.
基于集合Kalman滤波数据同化的热带气旋路径集合预报研究 总被引:1,自引:2,他引:1
构建了一个基于集合Kalman滤波数据同化的热带气旋集合预报系统,通过积云参数化方案和边界层参数化方案的9个不同组合,采用MM5模式进行了不同时间的短时预报。对预报结果使用“镜像法”得到18个初始成员,为同化提供初始背景集合。将人造台风作为观测场,同化后的结果作为集合预报的初值,通过不同参数组合的MM5模式进行集合预报。对2003~2004年16个台风个例的分析表明,初始成员产生方法能够对热带气旋的要素场、中心强度和位置进行合理扰动。同化结果使台风强度得到加强,结构更接近实际。基于同化的集合路径预报结果要优于未同化的集合预报。使用“镜像法”增加集合成员提高了预报准确度,路径预报误差在48小时和72小时分别低于200 km和250 km。 相似文献
14.
In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the observed minus calculated (O-B) radiances of most channels were reduced closer to zero, with peak values in each channel shifted towards zero, and the distribution of O-B closer to a Gaussian distribution than without bias correction. Secondly, ATOVS radiance data with and without bias correction are assimilated directly with an Ensemble Kalman Filter (EnKF) data assimilation system, which are then adopted as the initial fields in the forecast model T106L19 to simulate Typhoon Prapiroon (2006) during the period 2-4 August 2006. The prediction results show that the assimilation of ATOVS radiance data with bias correction has a significant and positive impact upon the prediction of the typhoon’s track and intensity, although the results are not perfect. 相似文献
15.
This study examines the performance of coupling the deterministic four-dimensional
variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a
superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR)
benefits from using the state-dependent uncertainty provided by EnKF while taking advantage
of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum
likelihood solutions through minimization of a cost function about which the ensemble
perturbations are transformed, and the resulting ensemble analysis can be propagated forward
both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility
and effectiveness of this coupled approach are demonstrated in an idealized model with
simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR
and the EnKF under both perfect- and imperfect-model scenarios. The performance of the
coupled scheme is also less sensitive to either the ensemble size or the assimilation window
length than those for standard EnKF or 4DVAR implementations. 相似文献
16.
Assimilation of Hourly Surface Observations with the Canadian High-Resolution Ensemble Kalman Filter
An hourly-cycling ensemble Kalman filter (EnKF) working at 2.5?km horizontal grid spacing is implemented over southern Ontario (Canada) to assimilate Meteorological Terminal Aviation Routine Weather Reports (METARs) in addition to the observations assimilated operationally at the Canadian Meteorological Centre. This high-resolution EnKF (HREnKF) system employs ensemble land analyses and perturbed roughness length to prevent an ensemble spread that is too small near the surface. The HREnKF then performs continuously for a four-day period, from which twelve-hour ensemble forecasts are launched every six hours. The impact on analyses and short-term forecasts of assimilating METAR data is given special attention.It is shown that using ensemble land surface analyses increases near-surface ensemble spreads for temperature and specific humidity. Perturbing roughness length enlarges the spread for surface wind. Given sufficient ensemble spread, the four-day case study shows that the near-surface model state is brought closer to surface observations during the cycling process. The impact of assimilating surface data can also be seen at higher levels by using aircraft reports for verification. The ensemble forecast verification suggests that METAR data assimilation improves ensemble forecasts of air temperature and dewpoint near the surface up to a lead time of six hours or even longer. However, only minor improvement is found in surface wind forecasts. 相似文献
17.
This study explores the potential for directly assimilating polarimetric radar data (including reflectivity Z and differential reflectivity ZDR) using an ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting
(WRF) model to improve analysis and forecast of Tropical Storm Ewiniar (2018). Ewiniar weakened but brought about heavy rainfall over Guangdong, China after its final landfall. Two experiments are performed, one assimilating only Z
and the other assimilating both Z and ZDR. Assimilation of ZDR together with Z effectively modifies hydrometeor fields, and improves the intensity, shape and position of rainbands. Forecast of 24-hour extraordinary rainfall ≥250 mm is
significantly improved. Improvement can also be seen in the wind fields because of cross-variable covariance. The current study shows the possibility of applying polarimetric radar data to improve forecasting of tropical cyclones, which
deserves more researches in the future. 相似文献