首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the discovery of the most complex arcsec-scale radio gravitational lens system yet known. B1933+503 was found during the course of the CLASS survey and MERLIN and VLA radio maps reveal up to 10 components. Four of these are compact and have flat spectra; the rest are more extended and have steep spectra. The background lensed object appears to consist of a flat-spectrum core (quadruply imaged) and two compact 'lobes' symmetrically disposed relative to the core. One of the lobes is quadruply imaged while the other is doubly imaged. An HST observation of the system with the WFPC2 shows a galaxy with an axial ratio of 0.5, but none of the images of the background object is detected. A redshift of 0.755 has been measured for the lens galaxy.  相似文献   

2.
The ultraluminous broad absorption line quasar APM 08279+5255 is one of the most luminous systems known. Here, we present an analysis of its nuclear  CO(1–0)  emission. Its extended distribution suggests that the gravitational lens in this system is highly elliptical, probably a highly inclined disc. The quasar core, however, lies in the vicinity of a naked cusp, indicating that APM 08279+5255 is truly the only odd-image gravitational lens. This source is the second system for which the gravitational lens can be used to study structure on sub-kiloparsec scales in the molecular gas associated with the AGN host galaxy. The observations and lens model require CO distributed on a scale of ∼400 pc. Using this scale, we find that the molecular gas mass makes a significant, and perhaps dominant, contribution to the total mass within a couple of hundred parsecs of the nucleus of APM 08279+5255.  相似文献   

3.
We present Hubble Space Telescope ( HST ) infrared images of four gravitational lens systems from the JVAS/CLASS gravitational lens survey and compare the new infrared HST pictures with previously published WFPC2 HST optical images and radio maps. Apart from the wealth of information that we get from the flux ratios and accurate positions and separations of the components of the lens systems, which we can use as inputs for better constraints on the lens models, we are able to discriminate between reddening and optical/radio microlensing as the possible cause of differences observed in the flux ratios of the components across the three wavelength bands. Substantial reddening has been known to be present in the lens system B1600+434 and has been further confirmed by the present infrared data. In the two systems B0712+472 and B1030+074 microlensing has been pinpointed as the main cause of the flux ratio discrepancy both in the optical/infrared and in the radio, the radio possibly caused by the substructure revealed in the lensing galaxies. In B0218+357, however, the results are still not conclusive. If we are actually seeing the two 'true' components of the lens system then the flux ratio differences are attributed to a combination of microlensing and reddening or are alternatively the result of some variability in at least one of the images. Otherwise the second 'true' component of B0218+357 may be completely absorbed by a molecular cloud and the anomalous flux density ratios and large difference in separation between the optical/infrared and radio that we see can be explained by emission either from a foreground object or from part of the lensing galaxy.  相似文献   

4.
We present observations of CLASS B2108+213, the widest separation gravitational lens system discovered by the Cosmic Lens All-Sky Survey. Radio imaging using the VLA at 8.46 GHz and MERLIN at 5 GHz shows two compact components separated by 4.56 arcsec with a faint third component in between which we believe is emission from a lensing galaxy. 5-GHz VLBA observations reveal milliarcsecond-scale structure in the two lensed images that is consistent with gravitational lensing. Optical emission from the two lensed images and two lensing galaxies within the Einstein radius is detected in Hubble Space Telescope imaging. Furthermore, an optical gravitational arc, associated with the strongest lensed component, has been detected. Surrounding the system is a number of faint galaxies which may help explain the wide image separation. A plausible mass distribution model for CLASS B2108+213 is also presented.  相似文献   

5.
The Gravitational Lenses International Time Project (GLITP) collaboration observed the first gravitational lens system (QSO 0957+561) from 2000 February 3 to March 31. The daily VR observations were made with the 2.56-m Nordic Optical Telescope at Roque de los Muchachos Observatory, La Palma, Spain. We have derived detailed and robust VR light curves of the two components Q0957+561A and Q0957+561B. In spite of the excellent sampling rate, we have not found evidence in favour of true daily variability. With respect to variability on time-scales of several weeks, we measure VR gradients of about −0.8 mmag d−1 in Q0957+561A and +0.3 mmag d−1 in Q0957+561B. The gradients are very probably originated in the far source. Thus, adopting this reasonable hypothesis (intrinsic variability), we compare them to the expected gradients during the evolution of a compact supernova remnant at the redshift of the source quasar. The starburst scenario is roughly consistent with some former events, but the new gradients do not seem to be caused by supernova remnant activity.  相似文献   

6.
We present R - and V -band photometry of the gravitational lens system QSO 0957+561 from five nights (one in 2000 January and four in 2001 March, corresponding to the approximate time delay for the system) of uninterrupted monitoring at the Nordic Optical Telescope. In the photometry scheme we have stressed careful magnitude calibration as well as corrections for the lens galaxy contamination and the crosstalk between the twin (A and B) quasar images. The resulting, very densely sampled, light curves are quite stable, in conflict with earlier claims derived from the same data material. We estimate high-precision timelag-corrected B/A flux ratios in both colour bands, as well as V – R colour indices for A and B, and discuss the short time-scale variability of the system.  相似文献   

7.
We present observations of a new double-image gravitational lens system, ULAS J082016.1+081216, of image separation 2.3 arcsec and high (∼6) flux ratio. The system is selected from the Sloan Digital Sky Survey (SDSS) spectroscopic quasar list using new high-quality images from the UKIRT (United Kingdom Infrared Telescope) Deep Sky Survey (UKIDSS). The lensed quasar has a source redshift of 2.024, and we identify the lens galaxy as a faint red object of redshift  0.803 ± 0.001  . Three other objects from the UKIDSS survey, selected in the same way, were found not to be lens systems. Together with the earlier lens found using this method, the SDSS–UKIDSS lenses have the potential to significantly increase the number of quasar lenses found in SDSS, to extend the survey to higher flux ratios and lower separations, and to give greater completeness which is important for statistical purposes.  相似文献   

8.
MG 2016+112 is a quadruply imaged lens system with two complete images A and B and a pair of merging partial images in region C as seen in the radio. The merging images are found to violate the expected mirror symmetry. This indicates an astrometric anomaly which could only be of gravitational origin and could arise due to substructure in the environment or line of sight of the lens galaxy. We present new high-resolution multifrequency very long baseline interferometry (VLBI) observations at 1.7, 5 and 8.4 GHz. Three new components are detected in the new VLBI imaging of both the lensed images A and B. The expected opposite parity of the lensed images A and B was confirmed due to the detection of non-collinear components. Furthermore, the observed properties of the newly detected components are inconsistent with the predictions of previous mass models. We present new scenarios for the background quasar which are consistent with the new observations. We also investigate the role of the satellite galaxy situated at the same redshift as the main lensing galaxy. Our new mass models demonstrate quantitatively that the satellite galaxy is the primary cause of the astrometric anomaly found in region C. The detected satellite is consistent with the abundance of subhaloes expected in the halo from cold dark matter (CDM) simulations. However, the fraction of the total halo mass in the satellite as computed from lens modelling is found to be higher than that predicted by CDM simulations.  相似文献   

9.
A gravitational lens model is presented for the newly discovered 10-image system B1933+503. The underlying object, revealed by modelling, is a triple radio source on the scale of a couple of hundred mas that is well-aligned along the line of sight with a foreground and somewhat flattened lensing galaxy, the orientation and location of which match those of an observed galaxy, known to be at a redshift of 0.755. Uncertainties in the modelling are obtained by a Monte Carlo exercise. Observational tests of the lens model are proposed, and the time delays between various pairs of images are determined, as the core of the source is known to be significantly variable. Future observations of the lens hold the key to using B1933+503 to constrain Hubble's constant. Despite the absence of a source redshift, the utility of the system as a probe of the structure of the lens galaxy is unparalleled as it provides a surfeit of easily identifiable constraints for modelling the system.  相似文献   

10.
While the Hubble constant can be derived from observable time delays between images of lensed quasars, the result is often highly sensitive to assumptions and systematic uncertainties in the lensing model. Unlike most previous authors, we put minimal restrictions on the radial profile of the lens and allow for non-elliptical lens potentials. We explore these effects using a broad class of models with a lens potential     which has an unrestricted radial profile but self-similar iso-potential contours defined by     For these potentials, the lens equations can be solved semi-analytically. The axis ratio and position angle of the lens can be determined from the image positions of quadruple gravitational lensed systems directly, independent of the radial profile. We give simple equations for estimating the power-law slope of the lens density directly from the image positions and for estimating the time delay ratios. Our method greatly simplifies the numerics for fitting observations and is fast in exploring the model parameter space. As an illustration, we apply the model to PG1115+080. An entire one-parameter sequence of models fits the observations exactly. We show that the measured image positions and time delays do not uniquely determine the Hubble constant.  相似文献   

11.
We present polarization observations of the gravitational lens system B1422+231 made at 8.4 GHz using the VLBA and the 100-m telescope at Effelsberg. All four images of the quasar show structure on the milliarcsec scale. The three bright images show tangential stretching as expected from lens models. Some basic properties of gravitational lensing are exhibited by this system. The surface brightness of images A and B are the same and the parity reversal expected in image B is revealed, for the first time, by polarization observations. There is a large differential Faraday rotation between images A and B.  相似文献   

12.
High-resolution MERLIN observations of a newly discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS data set. The MERLIN observations resolve four components in a characteristic quadruple-image configuration; the maximum image separation is 542 mas and the total flux density is 48 mJy at 5 GHz. A best-fitting lens model with a singular isothermal ellipsoid results in large errors in the image positions. A significantly improved fit is obtained after the addition of a shear component, suggesting that the lensing system is more complex and may consist of multiple deflectors. The integrated radio spectrum of the background source indicates that it is a gigahertz peaked spectrum source. It may therefore be possible to resolve structure within the radio images with deep VLBI observations and thus to constrain the lensing mass distribution better.  相似文献   

13.
A new four-image gravitational lens system, B0712+472, has been discovered during the Cosmic Lens All-Sky Survey. This system consists of four flat-spectrum radio images that are also seen on a Hubble Space Telescope ( HST ) image, together with the lensing galaxy. We present MERLIN, VLA and VLBA maps and WHT spectra of the system as well as the HST images. The light distribution of the lensing galaxy is highly elongated and so too is the mass distribution deduced from modelling. We suggest a redshift of ∼1.33 for the lensed object; the lens redshift will require further investigation. The discovery of this new system further increases the ratio of four-image to two-image lens systems currently known, exacerbating problems of required ellipticity of matter distributions in lensing galaxies.  相似文献   

14.
引力透镜效应是探测星系团物质分布的有效方法之一.目前,利用引力透镜数据重构星系团质量分布的主流方法可以分为两大类,即参数法和非参数法.在实际研究工作中,受限于质量模型假设和计算分辨率等方面的影响,现有的重构算法仍有诸多亟需解决的问题.基于Shapelets基函数的引力透镜质量重构方法通过基函数来实现引力透镜质量重构,使用Shapelets基函数分解引力透镜势,以引力透镜中多重像的位置和背景星系椭率畸变为限制条件来迭代求解基函数系数从而得到透镜体的质量分布.通过拟合一个模拟的NFW (Navarro,Frenk and White)透镜系统测试了新方法的可行性,结果表明新方法可以在整体上重构出透镜体的质量分布,并拟合出接近真实的源位置,能够为星系团质量测量提供一套灵活且高效的重构算法.  相似文献   

15.
We present a series of high-resolution radio and optical observations of the CLASS gravitational lens system B1152+199 obtained with the Multi-Element Radio-Linked Interferometer Network, Very Long Baseline Array and Hubble Space Telescope . Based on the milliarcsecond-scale substructure of the lensed radio components and precise optical astrometry for the lensing galaxy, we construct models for the system and place constraints on the galaxy mass profile. For a single galaxy model with surface mass density  Σ(r)∝r− β   , we find that  0.95 β 1.21  at 2 σ confidence. Including a second deflector to represent a possible satellite galaxy of the primary lens leads to slightly steeper mass profiles.  相似文献   

16.
We perform a detailed analysis of the optical gravitational lens ER 0047–2808 imaged with the Wide Field Planetary Camera 2 on the Hubble Space Telescope . Using software specifically designed for the analysis of resolved gravitational lens systems, we focus on how the image alone can constrain the mass distribution in the lens galaxy. We find that the data are of sufficient quality to strongly constrain the lens model with no a priori assumptions about the source. Using a variety of mass models, we find statistically acceptable results for elliptical isothermal-like models with an Einstein radius of 1.17 arcsec. An elliptical power-law model  (Σ∝ R −β)  for the surface mass density favours a slope slightly steeper than isothermal with  β= 1.08 ± 0.03  . Other models including a constant mass-to-light ratio (M/L), pure Navarro, Frenk & White halo and (surprisingly) an isothermal sphere with external shear are ruled out by the data. We find the galaxy light profile can only be fit with a Sérsic plus point-source model. The resulting total  M/L B   contained within the images is  4.7  h 65± 0.3  . In addition, we find the luminous matter is aligned with the total mass distribution within a few degrees. This is the first time a resolved optical gravitational lens image has been quantitatively reproduced using a non-parametric source.
The source, reconstructed by the software, is revealed to have two bright regions, with an unresolved component inside the caustic and a resolved component straddling a fold caustic. The angular size of the entire source is ∼0.1 arcsec and its (unlensed) Lyα flux is  3 × 10−17 erg s−1 cm−2  .  相似文献   

17.
We use archival g - and r -band photometry of the gravitational lens system QSO 0957+561A, B to estimate the intrinsic variability of the quasar during 1996 February–June. The light curves span 234 d with temporal resolutions of about 2.5 d. Both light curves display a single large-amplitude event, of ∼0.1 mag (max-to-min) in about 100 d, followed by small-amplitude variations of ∼0.02 mag on time-scales of tens of days. We find the r -band variations lag those at g by 3.4−1.4+1.5 d for the large-amplitude event. This lag is greater than zero at no less than 98 per cent confidence. The delayed coupling of the rest-frame UV intrinsic variations strongly suggests the existence of a stratified reprocessing region extending ∼light-days from the putative central black hole source. The observed lag is consistent with that expected from a reverberation within an irradiated accretion disc structure. However, any definitive statement requires further detailed theoretical modelling and high-quality, signal-to-noise ratio of about 100, optical/IR simultaneous monitoring with about 3-d resolution for approximately 6 months.  相似文献   

18.
Galaxies acting as gravitational lenses are surrounded by, at most, a handful of images. This apparent paucity of information forces one to make the best possible use of what information is available to invert the lens system. In this paper, we explore the use of a genetic algorithm to invert in a non-parametric way strong lensing systems containing only a small number of images. Perhaps the most important conclusion of this paper is that it is possible to infer the mass distribution of such gravitational lens systems using a non-parametric technique. We show that including information about the null space (i.e. the region where no images are found) is prerequisite to avoid the prediction of a large number of spurious images, and to reliably reconstruct the lens mass density. While the total mass of the lens is usually constrained within a few per cent, the fidelity of the reconstruction of the lens mass distribution depends on the number and position of the images. The technique employed to include null space information can be extended in a straightforward way to add additional constraints, such as weak-lensing data or time-delay information.  相似文献   

19.
Based on the DWT (discrete wavelet transform) method, we propose a new smoothing algorithm for computing surface densities from 3D numerical simulation samples. To check its effectiveness, we have applied this algorithm to two Monte-Carlo samples of gravitational lens simulation with different mass resolutions, generated from the isothermal ellipsoid model of dark matter halos. The calculated results indicate that this algorithm can reconstruct accurately the surface density distribution of the gravitational lens simulation sample, and that the lens caustics and critical curves derived from the surface densities agree well with the theoretical curves. We have compared the results calculated by using 3 different wavelet bases (Daub4, Daub6 and B-spline 3th), and identified the best one. Without sacrificing its smoothing capability, this algorithm has a very fast computing speed, suitable for later N-body numerical simulations, which require even higher resolutions.  相似文献   

20.
We study analytically a gravitational lens due to a deformed star, which is modelled by using a monopole and a quadrupole moment. Positions of the images are discussed for a source on the principal axis. We present explicit expressions for the lens equation for this gravitational lens as a single real 10th-order algebraic equation. Furthermore, we compute an expression for the caustics as a discriminant for the polynomial. Another simple parametric representation of the caustics is also presented in a more tractable form. A simple expression for the critical curves is obtained to clarify a topological feature of the critical curves; the curves are simply connected if and only if the distortion is sufficiently large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号