首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotite granite from the Sierra Nevada batholith was reacted, with known water contents in sealed platinum capsules, in a piston-cylinder apparatus between 10 and 35 kb. With the liquid just over-saturated with respect to water, temperatures for solidus and liquidus (quartz/coesite-out curve), respectively, are: 2 kb, 680°C, 715°C; 10 kb, 620°C, 725°C; 25 kb, 655°C, 800°C; 35 kb, 700°C, 850°C. The temperature interval is 35°C at 2 kb, 105°C at 10 kb, and 150°C at 35 kb, indicating that granite departs from a eutectic composition at depths greater than about 40–50 km. We conclude that crystal-liquid equilibria are not likely to yield primary rhyolite or granite magmas by partial fusion of oceanic crust in subduction zones. The solubility of water in granite liquids, in wt%, is 22.5 ± 2.5 at 25 kb and 810°C and 27 ± 2.5 at 35 kb and 850°C. These results indicate that a miscibility gap persists between water-saturated silicate magmas and aqueous vapor phase at least to pressures corresponding to 100 km depth in the mantle. The formation of kyanite near the liquidus of water over-saturated granite indicates that the aqueous vapor phase is enriched in alkalis and possibly silica, relative to the condensed phases.  相似文献   

2.
Experiments specifically devoted to problems of oversaturated peralkaline rocks have been primarily concerned with quartz + feldspar + liquid equilibria, and the determination of the low temperature liquids in the feldspar primary phase region. The results are brought together, and compared with natural compositions, by recalculating and plotting in the system Na2O-K2O-Al2O3-SiO2 (molecular). The minimum zone in the peralkaline quartz-feldspar cotectic is the synthetic analogue of most comendites and many pantellerites. Peralkaline trachytes and trachytic pantellerites appear to be the natural equivalents of synthetic low temperature liquids in the feldspar primary phase region, but the more peralkaline liquids cannot be a simple evolutionary series controlled only by feldspar fractionation. Experiments have yet to reveal the relating process (or processes) for the series pantelleritic trachyte to pantellerite. Feldspars separating from low temperature synthetic and natural liquids are usually Or35 ±5 i.e. equivalent to the composition range of the thermal minimum between the anorthoclase and sanidine solid solution loops in the alkali feldspar join. Such liquids may therefore be envisaged as the locus of compositions in the peralkaline system that are in equilibrium with alkali feldspar at the minimum in the solid solution series. Such feldspar, when it separates from the vast majority of peralkaline liquids is fractionating K2O and Al2O3, making the residual liquids more peralkaline and more sodic. Development of the peralkaline condition in natural liquids is commonly ascribed to the « plagioclase effect », but this creates its own dilemma by seeming to be effective only in liquids which are already distinctively alkaline. Furthermore it can only work in a low pressure regime. Examination of the high pressure melting curves of possible mantle minerals shows that acmitic pyroxenes have the lowest melting, in either hydrous or anhydrous conditions, especially at low partial pressures of oxygen. This provides a simple source control by which liquids will either be intrinsically peralkaline (if the melt volume is small) or inherit the potential for low pressure operation of the « plagioclase effect » (most basic magmas). Alkali transfer is well-attested in solid ? vapour experiments and in natural examples of metasomatic aureoles. The mobility of alkalis (and iron) must figure in any realistic scheme of peralkaline petrogenesis. This points up the need for experiments designed to meet the challenge ofopen system magmatism.  相似文献   

3.
A variety of methods exist to constrain sub-volcanic storage conditions of magmas. Petrological, seismological and satellite geodetic methods are integrated to determine storage conditions of peralkaline magmas beneath Dabbahu Volcano, Afar, Ethiopia. Secondary ion mass spectrometry (SIMS) analysis of volatile contents in melt inclusions trapped within phenocrysts of alkali feldspar, clinopyroxene and olivine from pantellerite obsidians representing the youngest eruptive phase (<8?ka) show H2O contents ≤5.8?wt.% and CO2 contents generally below 500?ppm, although rarely as high as 1,500 ppm. Volatile saturation pressures (at 679–835°C) are in the range 43–207?MPa, consistent with published experimental data for similar pantellerites, which show that the phenocryst assemblage of alkali feldspar + cpx + aenigmatite ± ilmenite is stable at 100 to 150?MPa. Inferred magma storage depths for these historic eruptions are ~1–5?km below sea-level, consistent with the depths of earthquakes, associated with magma chamber deflation following a dyke intrusion in the period Oct 2005–Apr 2006. Interferometric synthetic aperture radar (InSAR) data for the same period reveal a broad ~20?km diameter area of uplift. Modelling of different geometries reveals that a series of stacked sills over a 1–5?km depth range best matches the InSAR data. The consistency of depth estimates based on petrological study of ancient eruptions and the seismicity, inflation and deflation of Dabbahu observed in relation to the dyking event of 2005, suggest a small but vertically extensive and potentially long-lived magma storage region.  相似文献   

4.
Geology of the peralkaline volcano at Pantelleria,Strait of Sicily   总被引:1,自引:1,他引:1  
Situated in a submerged continental rift, Pantelleria is a volcanic island with a subaerial eruptive history longer than 300 Ka. Its eruptive behavior, edifice morphologies, and complex, multiunit geologic history are representative of strongly peralkaline centers. It is dominated by the 6-km-wide Cinque Denti caldera, which formed ca. 45 Ka ago during eruption of the Green Tuff, a strongly rheomorphic unit zoned from pantellerite to trachyte and consisting of falls, surges, and pyroclastic flows. Soon after collapse, trachyte lava flows from an intracaldera central vent built a broad cone that compensated isostatically for the volume of the caldera and nearly filled it. Progressive chemical evolution of the chamber between 45 and 18 Ka ago is recorded in the increasing peralkalinity of the youngest lava of the intracaldera trachyte cone and the few lavas erupted northwest of the caldera. Beginning about 18 Ka ago, inflation of the chamber opened old ring fractures and new radial fractures, along which recently differentiated pantellerite constructed more than 25 pumice cones and shields. Continued uplift raised the northwest half of the intracaldera trachyte cone 275 m, creating the island's present summit, Montagna Grande, by trapdoor uplift. Pantellerite erupted along the trapdoor faults and their hingeline, forming numerous pumice cones and agglutinate sheets as well as five lava domes. Degassing and drawdown of the upper pantelleritic part of a compositionally and thermally stratified magma chamber during this 18-3-Ka episode led to entrainment of subjacent, crystal-rich, pantelleritic trachyte magma as crenulate inclusions. Progressive mixing between host and inclusions resulted in a secular decrease in the degree of evolution of the 0.82 km3 of magma erupted during the episode.The 45-Ka-old caldera is nested within the La Vecchia caldera, which is thought to have formed around 114 Ka ago. This older caldera was filled by three widespread welded units erupted 106, 94, and 79 Ka ago. Reactivation of the ring fracture ca. 67 Ka ago is indicated by venting of a large pantellerite centero and a chain of small shields along the ring fault. For each of the two nested calderas, the onset of postcaldera ring-fracture volcanism coincides with a low stand of sea level.Rates of chemical regeneration within the chamber are rapid, the 3% crystallization/Ka of the post-Green Tuff period being typical. Highly evolved pantellerites are rare, however, because intervals between major eruptions (averaging 13–6 Ka during the last 190 Ka) are short. Benmoreites and mugearites are entirely lacking. Fe-Ti-rich alkalic basalts have erupted peripherally along NW-trending lineaments parallel to the enclosing rift but not within the nested calderas, suggesting that felsic magma persists beneath them. The most recent basaltic eruption (in 1891) took place 4 km northwest of Pantelleria, manifesting the long-term northwestward migration of the volcanic focus. These strongly differentiated basalts reflect low-pressure fractional crystallization of partial melts of garnet peridotite that coalesce in small magma reservoirs replenished only infrequently in this continental rift environment.  相似文献   

5.
Three major rhyolite systems in the northeastern Davis and adjacent Barrilla Mountains include lava units that bracketed a large pantelleritic ignimbrite (Gomez Tuff) in rapid eruptions spanning 300,000 years. Extensive silicic lavas formed the shields of the Star Mountain Formation (37.2 Ma-K/Ar; 36.84 Ma 39Ar/40Ar), and the Adobe Canyon Formation (37.1 Ma-K/Ar; 36.51-39Ar/40Ar). The Gomez Tuff (36.6 Ma-K/Ar; 36.74-39Ar/40Ar) blanketed a large region around the 18×24 km diameter Buckhorn caldera, within which it ponded, forming sections up to 500 m thick. Gomez eruption was preceded by pantelleritic rhyolite domes (36.87, 36.91 Ma-39Ar/40Ar), some of which blocked movement of Star Mountain lava flows. Following collapse, the Buckhorn caldera was filled by trachyte lava. Adobe Canyon rhyolite lavas then covered much of the region. Star Mountain Formation (~220 km3) is composed of multiple flows ranging from quartz trachyte to mildly peralkalic rhyolite; three major types form a total of at least six major flows in the northeastern Davis Mountains. Adobe Canyon Formation (~125 km3) contains fewer flows, some up to 180 m thick, of chemically homogenous, mildly peralkalic comendite, extending up to 40 km. Gomez Tuff (~220 km3) may represent the largest known pantellerite. It is typically less than 100 m thick in extra-caldera sections, where it shows a pyroclastic base and top, although interiors are commonly rheomorphic, containing flow banding and ramp structures. Most sections contain one cooling unit; two sections contain a smaller, upper cooling unit. Chemically, the tuff is fairly homogeneous, but is more evolved than early pantelleritic domes. Overall, although Davis Mountains silicic units were generated through open system processes, the pantellerites appear to have evolved by processes dominated by extensive fractional crystallization from parental trachytes similar to that erupted in pre- and post-caldera lavas. Comparison with the Pantelleria volcano suggests that the most likely parental magma for the Buckhorn series is transitional basalt, similar to that erupted in minor, younger Basin and Range volcanism after about 24 Ma. Roughly contemporaneous mafic lavas associated with the Buckhorn caldera appear to have assimilated or mixed with crustal melts, and, generally, may not be regarded as mafic precursors of the Buckhorn silicic rocks, They thus form a false Daly Gap as opposed to the true basalt/trachyte Daly gap of Pantelleria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

6.
Infrared spectroscopic analyses of melt inclusions in quartz phenocrysts from pantellerites erupted at Pantelleria, Italy, show that the magmas contained moderate pre-eruptive H2O contents, ranging from 1.4 to 2.1 wt.%. Melt H2O concentrations increase linearly with incompatible elements, demonstrating that H2O contents were not buffered significantly during fractionation by any crystalline or vapor phase. The relatively low H2O contents of pantellerites are consistent with an origin by partial melting of alkali gabbros rather than fractional crystallization of basalt. Preeruptive H2O concentrations do not correlate with the volume or explosivity of pantellerite eruptions; decompression history is critical in determining the style of pantellerite (and other) eruptions.  相似文献   

7.
A review of experimental data for systems, pertaining to anhydrous fertile garnet-lherzolite shows strong convergence in the liquidus and solidus temperatures for the range 6.5–15 GPa. These can converge either to a common temperature or to temperatures which differ by only ~ 100°C. The major-element composition of magmas generated by even minor degrees of partial melting may be similar to the primordial bulk silicate Earth composition in an upper-mantle stratigraphic column extending over 160 km in depth.The convergence of the solidus and liquidus temperatures is a consequence of the highly variable dTdP of the fusion curves for minerals which crystallize in peridotite systems. In particular, dTdP for the forsterite fusion curve is much less than that for diopside and garnet. Whether or not the solidus and liquidus intersect, the liquidus mineralogy for undepleted garnet-lherzolite compositions changes from olivine at low pressures to pyroxene, garnet, or a complex pyroxene-garnet solid solution at pressures in excess of 10–15 GPa. Geochemical data for the earliest Archean komatiites are consistent with an upper-mantle phase diagram having garnet as a liquidus phase for garnet-lherzolite compositions at high pressures. All estimates of the anhydrous solidus and liquidus for the range 10–15 GPa are consistent with silicate liquid compressibility data, which indicate that olivine may be neutrally buoyant in ultramafic magmas at these pressures.  相似文献   

8.
The present study aimed to test reliability of luminescence and electron spin resonance (ESR) methods to date tephra. We investigated on three Japanese marker tephras, Ikeda-ko (6.4 ka), Aira-Tn (30 ka) and Aira-Iwato (45–50 ka). A systematic studies were performed using different minerals (quartz and feldspar), different grain fractions (75–250 and 250–500 μm), different luminescence and ESR signals, like optically stimulated luminescence (OSL) of quartz, infrared stimulated luminescence (IRSL) of feldspar, including recently developed least faded post infrared IRSL (pIR-IRSL), and ESR signals from paramagnetic centers Al and Ti–Li of quartz. Ages obtained using pIR-IRSL signal of plagioclase with preheat of 320 °C, 60 s and stimulation at 300 °C are consistent with the reference ages. High dose detection range (up to ∼600 Gy) and accurate age estimation enable pIR-IRSL of feldspar a promising methodology to date quaternary tephra. ESR ages from quartz are grossly correlated with the reference ages but large deviation and large associated errors are observed, possibly due to either low signal to noise ratio or heterogenous dose response of different aliquot in multiple aliquot additive dose (MAAD) approach.  相似文献   

9.
The melting curves of CaCO3 and MgCO3 have been extended to pressures of 36 kb by experiments in piston-cylinder apparatus. At 30 kb, the melting temperatures of calcite and magnesite are 1610°C and 1585°C, respectively. New data for the magnesite dissociation reaction permit the location of an invariant point for the assemblage magnesite + periclase + liquid + vapor near 26 kb-1550°C. New data are also presented for the calcite-aragonite transition at 800°C, 950°C and 1100°C. At pressures above 36–50 kb, calcite and magnesite melt at temperatures lower than the solidus of dry mantle peridotite. Natural and experimental evidence suggests that carbon dioxide in the Earth's mantle could be present in a variety of forms: (a) a free vapor phase, (b) vapor dissolved in silicate magma, (c) crystalline carbonate, (d) carbonatite liquid, (e) carbon-bearing silicate analogs, or (f) carbonato-silicates (such as scapolite, spurrite, tilleyite, and related compounds).  相似文献   

10.
The Moshirabad pluton is located southwest of the Sanandaj–Sirjan Metamorphic Belt, Qorveh, western Iran. The pluton is composed of diorite, monzodiorite, quartz diorite, quartz monzodiorite, tonalite, granodiorite, granite, aplite, and pegmatite. In this study 31 samples from various rocks were chosen for whole‐rock analyses and 15 samples from different lithologies were chosen for mineral chemical studies. The compositions of minerals are used to describe the nature of magma and estimate the pressure and temperature at which the Moshirabad pluton was emplaced. Feldspar compositions are near the binary systems in which plagioclase compositions range from An5 to An53 and alkali‐feldspar compositions range from Or91 to Or97. Mafic minerals in the plutonic rocks are biotite and hornblende. Based on the composition of biotites and whole‐rock chemistry, the Moshirabad pluton formed from a calc‐alkaline magma. Amphiboles are calcic amphiboles (magnesio‐hornblende or edenite). Temperatures of crystallization, calculated with the hornblende–plagioclase thermometer, range 550–750°C. These temperatures indicate that plutonic rocks have undergone some retrogressive changes in their mineral compositions. Aluminum‐in‐hornblende geobarometry indicates that the Moshirabad pluton was emplaced at pressures of 2.3–6.0 kbar, equal to depths of 7–20 km, but with consideration of regional geology, lower pressures than the above pressure range are more probable. Alteration of amphiboles can be the reason for some overestimation of pressures.  相似文献   

11.
Tholeiitic basalt glasses from the FAMOUS area of the Mid-Atlantic Ridge are among the most primitive basaltic liquids reported from the ocean basins. One of the more primitive of these[Mg/(Mg+Fe2+) = 0.68;Ni= 232ppm;TiO2 = 0.61] glasses (572-1-1) was selected for an experimental investigation. This study found olivine to be the liquidus phase from 1 atm to 10.5 kbar where it is replaced by clinopyroxene. The sequence of appearance of phases at 1 atm pressure is olivine (1268°C), plagioclase (1235°C) and clinopyroxene (1135°C). The sample is multiply saturated at 10.5 kbar with olivine (Fo88), clinopyroxene (Wo32En60Fs9), and orthopyroxene (Wo5En83Fs12). From the 1-atm data we have measured (FeO/MgO) olivine/(FeO*/MgO) liquid (K′D) for olivine-melt pairs equilibrated at 12 temperatures in the range 1268–1205°C.K′D varies from 0.30 at 1205°C to 0.27 at 1268°C. Analysis of high-pressure olivine melt pairs indicates a systematic increase inK′D with pressure.Evaluation of the 1-atm experiments reveals that fractionation of olivine followed by olivine + plagioclase can generate much of the variation in major element chemistry observed in the FAMOUS basalt glasses. However, it cannot account for the entire spectrum of glass compositions — particularly with respect to TiO2 and Na2O. The variations in these components are such as to require different primary liquids.Comparison of clinopyroxene microphenocrysts/xenocrysts found in oceanic tholeiites with experimental clinopyroxenes reveal that the majority of those in the tholeiites may have crystallized from the magma at pressures greater than ~ 10 kbar and are not accidental xenocrysts. Clinopyroxene fractionation at high pressures may be a viable mechanism for fractionating basaltic magmas.The major and minor element mineral/meltK′d's from our experiments have been used to model the source region residual mineralogy for given percentages of partial melting. These data suggest that ~20% partial melting of a lherzolite source containing 0–10% clinopyroxene can generate the major and minor element concentrations in the parental magmas of the Project FAMOUS basalt glasses.  相似文献   

12.
Mixtures of natural quartz and synthetic muscovite and sanidine, with and without free water, were reacted in piston-cylinder apparatus between 10 and 35 kb. Extrapolation of experimentally determined melting curves defines an invariant point for the assemblage muscovite + sanidine + corundum + liquid + vapor at 9.5 kb and 825°C, and one for the same assemblage with quartz at 5.8 kb and 730°C. These two points define the high pressure limit for the subsolidus dehydration reactions of muscovite and of muscovite + quartz, which facilitates selection among the varied muscovite dehydration curves previously published. Comparison of published estimates of temperature distribution of subducted lithosphere slabs with muscovite stability ranges indicates that muscovite in subducted oceanic sediments would probably be dehydrated or melted before reaching a depth of 30 km, with a maximum possible depth of 100 km. This suggests that although muscovite could possibly be involved in magma generation at volcanic fronts, it neither contributes water for magmatic processes much beyond Dickinson's arc-trench gap, nor influences the chemical variation in calc-alkaline lavas across arc complexes and in plutonic rocks across batholiths.  相似文献   

13.
Pantelleria Island, located in the Sicily Channel Rift Zone (Italy), is the type locality for the peralkaline rhyolitic rocks called pantellerites. In the last 50 ka, after the large Green Tuff caldera-forming eruption, volcanic activity at Pantelleria has consisted of effusive and explosive eruptions mostly vented inside and along the rim of the caldera and producing silicic lava flows, lava domes and poorly dispersed pantelleritic pumice fall deposits. Basaltic cinder cones and lava flows are only present outside the caldera in the NW sector of the island. The most recent basaltic (Cuddie Rosse, ~ 20 ka) and pantelleritic (Cuddia Randazzo and Cuddia del Gallo, ~ 6 ka) pyroclastic products were sampled to investigate magmatic volatile contents through the study of melt inclusions.The melt inclusions in pyroxene and olivine phenocrysts of Cuddie Rosse scoriae have an alkali basalt composition. The dissolved volatiles comprise 0.9–1.6 wt.% H2O, several hundred ppm of CO2, 1600–2000 ppm of sulphur and 500–900 ppm of chlorine. The water–carbon dioxide couple gives a confining pressure ~ 2 kbar prior to the eruption. This result indicates that episodes of magma ponding and crystallization occurred in the upper crust prior to eruption. The melt inclusions in feldspar, fayalite and aenigmatite phenocrysts of Cuddia del Gallo and Cuddia Randazzo pumice have a pantelleritic composition (Agpaitic Indices 1.3–2.1), up to 4.4 wt.% H2O, 8700 ppm Cl, 6000 ppm F, and CO2 below the detection limit. Sulphur averaging 420 ppm has been measured in Cuddia Randazzo melt inclusions. These data indicate relatively high volatile contents for these low-energy Strombolian-type eruptions. Melt inclusions in Cuddia del Gallo pumice show the most evolved composition (Agpaitic Indices 2–2.1) and the highest volatile content, in agreement with fluid saturation conditions in the magma chamber prior to the eruption. This implies a confining pressure of ~ 1 kbar for the top of the pantelleritic reservoir. The composition of melt inclusions and mineralogical assemblage of Cuddia Randazzo pumice indicate that it has a lower evolutionary degree (Agpaitic Indices 1.3–1.8) and lower pre-eruptive Cl and H2O contents than Cuddia del Gallo pumice. An increase in pressure due to the exsolution of volatiles in the upper part of the pantelleritic reservoir may have triggered the Cuddia del Gallo explosive eruption. Evidence of widespread pre-eruptive mingling between trachytes and pantellerites suggests that the intrusion of trachytic magma into the pantelleritic reservoir likely played a major role in destabilizing the magma system just prior to the Cuddia Randazzo event.  相似文献   

14.
Rocks having a pseudofluidal ignimbrite texture have been found on Saikhan Volcano in northeastern Khangai, Mongolia. The rocks have a typically nodular banded texture. The fiamme and the bands vary in width between a few millimeters to a few centimeters. These rocks have the same bulk composition as trachybasalts and do not differ from the ordinary trachybasalts found on this volcano in the form of dikes and lavas. The difference consists in the composition of glasses and minerals, as well as in the concentration of CO2 (which is higher in the ignimbrite-like rocks). The glasses in the ignimbrite-like rocks show a trend from basaltic trachyandesites to tephriphonolites and foidites, thus indicating the liquidus crystallization of clinopyroxene. The glasses in the lavas and dikes have a trachyte composition, indicating a residual origin following the crystallization of olivine and Ti-magnetite. Much of the pyroxenes (∼20%) in the ignimbrite-like rocks show calculated pressures during their generation to have been in the range of 6.5–14 kbars, while all pyroxenes in the ordinary lavas and dikes crystallized at pressures below 0.3 kbars. It thus follows that the magmas that have produced the ignimbrite-like rocks began crystallizing in the subcrustal magma chamber under fluid-saturated conditions, whence they were rapidly transported to the surface.  相似文献   

15.
Abstract Pseudotachylytes are present along the Dahezhen shear zone in the Qinling–Dabie Shan collisional orogenic belt, central China. Two types of pseudotachylyte vein are documented in the shear zone: cataclasite‐related pseudotachylyte (C‐Pt) and mylonite‐related pseudotachylyte (M‐Pt). M‐Pt is associated with mylonite‐development and is overprinted by C‐Pt. All of the quartz and most of the feldspar porphyroclasts within the M‐Pt are plastically deformed, but not in the C‐Pt. Dynamically recrystallized fine‐grained quartz and feldspar bands are oriented subparallel to the mylonite and M‐Pt foliation, and partially surround the porphyroclasts. Our results suggest that the M‐Pt formed cyclically in the ductile region at estimated conditions of 400–650°C and 400–800 MPa due to propagation of seismic fracturing associated with the thrusting‐related rapid exhumation of the ultrahigh‐pressure metamorphic complex in the brittle regime down to a greater depth than the base of the seismogenic zone. The M‐Pt and mylonite formed in the Dahezhen shear zone at estimated conditions of 400–650°C and 400–800 MPa. The coexistence of C‐Pt and M‐Pt in the same shear zone suggests that repeated seismic slips occurred in both the brittle and ductile portions of the crust during the thrusting‐related rapid exhumation of the ultrahigh‐pressure metamorphic complex.  相似文献   

16.
Experiments in a piston-cylinder apparatus have been carried out at 700–1050°C, 10–16 kbar to determine the stability of ferrosilite (FeSiO3) relative to fayalite + quartz. Reaction reversals within 0.1-kbar intervals locate the equilibrium at 10.5, 11.0, 11.5, 12.0, 12.6, 13.3, 14.1 and 14.8 kbar at 700, 750, 800, 850, 900, 950, 1000, and 1050°C, respectively, reflecting the intercept with the α-β quartz transition at about 880°C. The tight reversals severely constrain the reaction slope, providing a basis for limited extrapolation and calculations. However, the lack of accurate activity and cation-distribution data for orthopyroxene and olivine generates substantial uncertainties when considering the effects of large proportions of additional components such as MgO. Experiments and calculations indicate that additional components dramatically extend the pyroxene stability field and that pressures that have been inferred from ferrosilite-rich pyroxenes in natural assemblages are 1–3 kbar too high.  相似文献   

17.
Northeastern China is located in the East Asian monsoon region; it is sensitive to both high and low latitude global climate systems. Loess deposits in the region have considerable potential as sensitive archives of past climate changes. However, research into loess deposition and climate change in this region is restricted by the lack of independent age control. In this study, coarse-grained quartz SAR OSL and K-feldspar post-IR infrared (IR) stimulated luminescence (post-IR IRSL; pIRIR290) methods have been used to date the Sanbahuo loess site in northeastern China. The quartz OSL characteristics are satisfactory. The measured pIRIR290 De's do not vary significantly with IR stimulation temperatures between 50 °C and 260 °C; a first IR stimulation temperature of 200 °C was adopted. Dose recovery tests were performed by adding different laboratory doses to both laboratory bleached (300 h SOL2) samples and natural samples; the results are satisfactory up to ∼800 Gy. Resulting quartz OSL and feldspar pIRIR290 ages are in good agreement at least back to ∼44 ka; beyond this feldspar pIRIR290 ages are older. The feldspar ages are consistent with the expected age of the S1 palaeosol (MIS 5). There appears to have been a period of fast loess deposition at ∼62 ka, perhaps indicative of winter monsoon intensification with a very cold and dry climate that lead to a serious desertification of dunefields in northeastern China.  相似文献   

18.
The Wulanmulun site found in 2010 is an important Paleolithic site in Ordos (China), from which lots of stone and bone artifacts and mammalian fossils have been recovered. It was previously dated by radiocarbon and optically stimulated luminescence (OSL) techniques on quartz. To further confirm the reliability of the chronology constructed based on OSL ages and test the applicability of the recently developed pIRIR procedure on sediments from northern China, twenty-four sediment samples (including eolian, lacustrine and fluvio-eolian sands) from the site were determined using the multi-elevated-temperature post-IR IRSL (MET-pIRIR or pIRIR) procedure on potassium feldspar. The results show that the studied samples have two MET-pIRIR De preheat plateaus (280–320 and 340–360 °C), and the bleaching rates of the luminescence signals are associated with sample ages and stimulation temperatures. All the pIRIR ages (7–155 ka) corrected for anomalous fading and residual dose obtained after solar bleaching for 15 h are larger than the corresponding quartz OSL ages (4–66 ka) previously determined, even for the young eolian samples (<10 ka). But the corrected IRSL(50 °C) ages (6–85 ka) are broadly consistent with the quartz ages. It appears that the IRSL(50 °C) ages are more reliable, although this contradicts the previously results obtained by other people. On the other hand, we also obtained an extended age plateau between the stimulation temperatures of 50 and 290 °C in the plot of age versus stimulation temperature (A-T plot) by subtracting different residual doses obtained after different bleaching times. The reliability of the plateau ages requires further investigation. For the sediment samples from this site, quartz should be more suitable for dating than K-feldspar, and the quartz OSL ages of 50–65 ka for its cultural layer should be reliable.  相似文献   

19.
The optically stimulated luminescence (OSL) signals from quartz have been widely used to estimate the equivalent dose (De) of environment radiation after the deposition of mineral grains. However, the usage of quartz is often limited due to the lower saturation behavior compared with feldspar. Saturation limits among quartz (defining the upper dating range) vary significantly. It is important to better understand the reason for various dose saturation behaviors of the quartz OSL signals. In this study, coarse quartz grains were extracted from the Taklimakan Desert and the Hunshandake sandy land in north China and the dose saturation behavior of quartz OSL signals were studied. Our results suggest that the quartz grains produce very different aliquot-specific dose response curves, showing the significant variability in dose saturation characteristics for OSL signals. Laboratory dosing, optical bleaching and heating experiments were designed to simulate their effects on the dose saturation behavior for the quartz OSL. The results demonstrate that cycles of dosing and optical bleaching have insignificant impact on the OSL dose growth curves, while the heating to high temperature (above 400 °C) can significantly change the dose saturation characteristics for the quartz OSL. Such results suggest that the different heating history of quartz might be an important factor for the variability in dose saturation characteristics for OSL signals. Additionally, the quartz grains from the Hunshandake sandy land exhibit lower dose saturation level for OSL signals, compared with that from the Taklimakan Desert. This can be explained that the quartz grains from Hunshandake sandy land are mainly of igneous origin, while the quartz grains from Taklimakan Desert are mainly of metamorphic origin.  相似文献   

20.
 Experiments on degassing of water-saturated granite melts with a pressure drop from 100 and 450 MPa to 40 and 120 MPa, respectively, at temperatures close to feldspar liquidus (750–700  °C), were carried out to determine the modality of water exsolution and vesicle formation at the liquidus temperature. Pressure-drop rates as small as approximately 100 bar/day were used. Uniform space distributions of bubbles of exsolved water were obtained with starting glass containing a small fraction (≈0.5 vol.%) of trapped air bubbles. Volume crystallization of feldspar was observed in degassed melts supplied with seeds. Bubble size distributions (BSD) measured in granite glasses after degassing are presented. Data on vesicle characteristics (number, radius, area, elongation) were acquired on images digitized with standard software, while the reconstruction of size distributions was performed with the Schwartz-Saltikov "unfolding" procedure. Bubble size distributions of size classes in the range 5–1000 μm were acquired with proper magnification and satisfactory statistical reliability of determined number densities. The BSDs of the experimental samples are compared with the results of measurements of rapidly degassed products of Mt. Etna and Vulcano Island. Many particular features of the bubble nucleation and growth can be distinguished in an individual BSD. However, the general BSD of the whole data set, including natural ones, can be relatively well described with linear regression in bilogarithmic coordinates. The slope of this regression is approximately 2.8±0.1. This dependence is in striking contrast with distributions theoretically predicted with classical nucleation models based on homogeneous nucleation of vesicles. The theoretical distribution requires the occurrence of strong maxima that are not observed in our experimental and natural samples, thus arguing for heterogeneous nucleation mechanisms. Received: 1 October 1998 / Accepted: 25 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号