首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Plio-Quaternary volcanic rocks of the south-central Andes (southward from latitude 18°S) contain two associations: calc-alkaline and shoshonitic which coincide with seismic belts as geographically distinct zones aligned parallel to the oceanic trench. There is a continuous gradation from calc-alkaline to shoshonitic associations. The shoshonitic association appears to the north of latitude 26°S; southwards, the calc-alkaline association directly abuts against the continental (Argentinian) alkaline association.Thirty-one lavas from the Plio-Quaternary calc-alkaline Socompa, Lascar, Sairecabur and Tocorpuri and shoshonitic Sierra de Lipez volcanoes were studied. The lavas are porphyric with abundant glass. The distribution and the nature of the phenocrysts vary according to the chemistry of the calc-alkaline lavas. Petrographic evidence for crystal fractionation has been observed. Occasional phenocrysts of alkali feldspars occur in the shoshonitic lavas. The K2O and SiO2 contents increase from calc-alkaline to shoshonitic lavas with distance away from the oceanic trench. In lavas from Socompa, Lascar, Sairecabur and Tocorpuri calc-alkaline volcanoes, K2O, Li and Rb increase and K/Rb and Sr decrease with increasing SiO2; Ba increases with decreasing Sr, probably as a result of plagioclase fractionation. In lavas from Sierra de Lípez shoshonitic volcano, SiO2 is high, K2O is high and rather constant and Li, Rb, Ba and Sr increase with increasing SiO2. Bolivian shoshonitic lavas appear to be genetically related to the calc-alkaline suite.The calc-alkaline lavas may be derived by crystal fractionation from a parental magma of andesitic nature that originated in or above the subjacent Benioff zone.  相似文献   

2.
Most of the lavas at the nine volcanic centers along the volcanic front of El Salvador are basalts, basaltic andesites and andesites. The compositional variation within and among these centers can be explained by fractionation processes within the crust. Cognate gabbroic inclusions found in the lavas have appropriate mineralogy (plagioclase, olivine, magnetite and augite) to be cumulates formed by fractional crystallization. Two main variation trends occur, depending on the proportion of plagioclase removal. The more common, or normal, trend has a high (> 55%) proportion of plagioclase being removed. A less common, Al-rich, trend has a low (40%) proportion of plagioclase being removed. The Al-rich trend is found only at volcanoes that lack large negative Bouguer gravity anomalies. These volcanoes are unlikely to have large shallow magma chambers and fractionation probably occurs deeper in the crust where plagioclase removal is inhibited.The incompatible element (Na2O, K2O, Rb, Ba) contents of lavas vary systematically with the volume of the volcanic centers. At the same level of SiO2, large volcanic centers have higher incompatible element contents than small volcanic centers. This suggests that open system fractionation in a periodically refilled chamber is the controlling factor. The large difference in Ba contents of lavas between eastern (low) and western (high) El Salvador suggests a difference in the mantle source region.  相似文献   

3.
The Nevados de Chillán are located in the Southern Chilean Andean Cordilleras (71°25′ W, 36°50′ S). Their historic activity is retraced since 1750. The quaternary volcanoes are located along the major axis of an old elliptic caldera. The recent lavas of the Nevados de Chillán are andesites and dacites characteristic of cale-alkaline association which is classical for orogenic beits. Their K2O content has been correlated with the depth of the Benioff zone in the frame of the quaternary volcanism of the Chilean continental margin.  相似文献   

4.
Data for 8 major and 45 trace elements in 6 central North Island andesites and 8 Japanese andesites ofKuno’s hypersthenic series are presented. The andesite compositions are compared with that of average continental crustal material, and differences and similarities are noted. The rare earth abundance patterns are similar to those of well mixed crustal material. Present data for the absolute abundances of Rb, K, Ba, U and Th in particular appear to be too low for derivation of andesitic magma by mixing of average basaltic and granitic material. Implications of the data for the origin of andesite magma and for continental growth are discussed.  相似文献   

5.
87Sr/86Sr ratios of 15 samples of basalt dredged from Loihi Seamount range from 0.70334 to 0.70368. The basalt types range from tholeiite to basanite in composition and can be divided into six groups on the basis of abundances of K2O, Na2O, Rb and Sr and 87Sr/86Sr ratio. The isotopic data require that the various basalt types be derived from source regions differing in Sr isotopic composition. The Loihi basalts may be produced by mixing of isotopically distinct sources, but the tholeiites and alkalic basalts from Loihi do not show a well-developed inverse trend between Rb/Sr and 87Sr/86Sr that is characteristic of the later stages of Hawaiian volcanoes such as Haleakala and Koolau.  相似文献   

6.
Volcanic rocks of the Sunda and Banda arcs range from tholeiitic through calcalkaline and shoshonitic to leucititic, the widest compositional span of mafic magmatism known from an active arc setting.Mafic rocks in our data set, which includes 315 new analyses of volcanic rocks from twelve Quaternary volcanoes, including Batu Tara in the previously geochemically unknown Flores-Lembata arc sector, are generally similar to those from other island arcs: most contain <1.3 wt. % TiO2 and 16–22 wt. % Al2O3, and have characteristically high K/Nb and La/Nb values. Abundances of P, Ba, Rb, Sr, La, Ce, Nd, Zr and Nb increase sympathetically with increasing K2O contents of mafic rocks but those of Na, Ti, Y and Sc vary little throughout the geochemical continuum from low-K tholeiitic to high-K leucititic rocks.Excluding Sumatra and Wetar, which possess mainly dacitic and rhyolitic volcanics, the Sunda-Banda arc is divisible into four geochemical arc sectors with boundaries that correlate with major changes in regional tectonic setting and geological history. From west to east, the West Java, Bali and Flores arc sectors each comprise volcanoes which become progressively more K-rich eastwards, culminating in the leucitite volcanoes Muriah, Soromundi and Sangenges, and Batu Tara, respectively. In the most easterly Banda sector, the volcanics vary from high- to low-K eastwards around the arc.Correlations between geochemistry and 87Sr/86Sr values show separate trends for each of the four arc sectors, believed to be the result of involvement of at least three geochemically and isotopically distinct components in the source regions of the arc magmatism.A dominant source component with a low K content and a low 87Sr/86Sr value, and common to all sectors, is probably peridotitic mantle. A second component, with low K content but high 87Sr/86Sr value, appears to be crustal material. This component is most apparent in the Banda sector, in keeping with that sector's tectonic setting close to Precambrian Australian continental crust, but it is also present to lesser extents in the West Java and Flores sectors.However, the most marked geochemical and isotopic variations shown by the arc volcanics are primarily due to the involvement of a third component, which is rich in K-group elements but has relatively low 87Sr/86Sr values. This component appears to be mantle-derived and is least overprinted by crustal material in the Bali sector volcanics where the Pb, Be, U-Th and O isotope characteristics of the rocks support the suggestion that their genesis has not involved incorporation of recently subducted, continent-derived sialic material.The high, regionally persistent, Th/U value (about 4.3) of the Sunda subarc mantle, obtained from U-Th isotopic data, suggests a close association could exist between the K-rich component and the southern hemisphere ‘DUPAL’ mantle isotopic anomaly.  相似文献   

7.
Preliminary data on major elements, Cs, Ba, Rb, Pb, Sr, REE, Y, Th, U, Zr, Ht, Sn, Nb, W, Mo, Cr, V, Sc, Ni, Co and Cu contents for eight samples coming from the Upper Cretaceous volcanic belt of the Pontic Chain (Northern Turkey) are reported. SiO, versus K2O relationship shows that the analyzed samples belong to the calc-alkaline and shoshonite series. The calc-alkaline rocks appear to represent two distinct magma types one close in composition to typical island are calc-alkaline magmas and one with high incompatible elements concentration and tractionated heavy REE patterns which suggest a genesis by partial melting at high pressure with a garnet bearing residue. Shoshonitic rocks show Na2O/K2O close to one, high incompatible elements concentration, and TiO2%. Al2O3%, Ni and Co contents, Ni/Co and V/Ni ratios and REE patterns similar to typical island are andesites which suggest for these rocks similar genetical processes as the island are calc-alkaline magmas.  相似文献   

8.
The Tiefosi granitic pluton is located 5 km northwest of Xinyang City,northern Dabie Orogen,and was emplaced in the Proterozoic Qinling Group. SHRIMP zircon U-Pb dating suggests its crystallization at 436 ± 11 Ma. It is composed of monzogranite and syenogranite containing some amounts of muscovite and few mafic minerals. The rocks are characterized by high and restricted SiO2 content,low FeO,Fe2O3 and MgO contents,high K2O/Na2O ratio,and display high-K calc-alkaline and peraluminous (ACNK>1.1) characteristics. They are generally enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). They can be divided into three groups in light of rare earth elements (REE) and trace elements. Group I is moderate in ΣREE and characterized by the absence of Eu anom-aly,high (La/Yb)N ratio,and moderate Rb/Sr and Rb/Ba ratios. Group Ⅱ has moderately negative Eu anomaly,low (La/Yb)N ratio and high ΣREE contents,Rb/Sr and Rb/Ba ratios. Group Ⅲ displays positive Eu anomaly,moderate (La/Yb)N ratio,and low ΣREE,Rb/Sr and Rb/Ba ratios. The calculated εNd(440Ma) values of the rocks vary from 8.8 to 9.9 and Nd depleted mantle model ages are about 2.0 Ga,which resemble those of the paragneisses from the Qinling Group. The results indicate that the Tiefosi granite is crust-derived,syn-collisional S-type granite. Generation of Group I was related to low degree melting of the Qinling Group,while Group Ⅱ was formed by fractionational crystallization of plagioclase from Group I magmas,and Group Ⅲ resulted possibly from magma mingling with plagioclase cumulates. The Tiefosi granite was formed within crustal level related to the collision between the North China and South China blocks in the Early Paleozoic time.  相似文献   

9.
K, Rb and Sr concentrations and Sr isotopic compositions were determined for the Dai granitic rocks of trondhjemitic composition occurring in a serpentinite mass in the Nagato tectonic zone formed in the Late Paleozoic era, and for the granitic rocks of quartz dioritic composition recently dredged from the seamount of the Kyushu-Palao Ridge. Both granitic rocks are characterized by low abundances of K and Rb, low K2O/Na2O ratios, high K/Rb ratios, low Rb/Sr ratios and low initial87Sr/86Sr ratios. These characteristics suggest that strong similarities may exist between the Dai granitic rocks and the dredged granitic rocks, and that the Dai granitic rocks may be classified as oceanic plagiogranite. These oceanic plagiogranites may plausibly represent single-stage mantle-derived granites, possibly from the suboceanic mantle.  相似文献   

10.
Three composite cones have grown on the southern edge of the previously existing Atitlán Cauldron, along the active volcanic axis of Guatemala. Lavas exposed on the flanks of these cones are generally calc-alkaline andesites, but their chemical compositions vary widely. Atitlán, the largest and most southerly of the three cones, has recently erupted mainly pyroclastic basaltic andesites, while the flanks of San Pedro and Tolimán are mantled by more silicic lava flows. On Tolimán, 74 different lava units have been mapped, forming the basis for sequential sampling. Rocks of all three cones are consistently higher in K2O, Rb, Ba and REE than other Guatemalan andesites. Atitlán’s rocks and late lavas from Tolimán have high Al2O3 content, compared to similar andesites from other nearby cones. All major and trace element data on the rocks are shown to be consistent with crystal fractionation involving phases observed in the rocks. If such models are correct, significant differences in the relative proportions of fractionation phases are necessary to explain the varied compositions, in particular higher Al2O3 rocks have fractionated less plagioclase. We speculate that inhibition of plagioclase fractionation could occur in chambers where PH2O is greater and when repose intervals are shorter. The distribution of volcanic vents throughout Guatemala which show this postulated «inhibition of plagioclase fractionation» is systematic with such vents lying just to the south of the main axis. The andesites of the three cones cannot be simply related to the late-Pleistocene rhyolites which are apparently associated with cauldron formation, because unlike the andesites, the rhyolites have markedly depleted heavy REE abundances. Recent dacitic lavas from vents south of San Pedro volcano and silicic pyroclastic rocks which mantle the slopes the San Pedro may reflect residual post-cauldron rhyolitic volcanism.  相似文献   

11.
Lithium isotope fractionation in the southern Cascadia subduction zone   总被引:2,自引:0,他引:2  
We present lithium (Li) abundances and isotope compositions for a suite of anhydrous olivine tholeiites (HAOTs) and hydrous basalt-andesitic (BA) lavas from the Mt. Shasta and Medicine Lake regions, California. The values of δ7Li vary from + 0.9‰ to + 6.4‰ and correlate inversely with distance from the trench. These data are consistent with continuous isotope fractionation of Li during dehydration of the subducted oceanic lithosphere, an interpretation corroborated by uniformly high pre-eruptive H2O contents in basaltic andesites accompanied by high Li, Rb, Sr, Ba and Pb abundances. The subduction-derived component that was added to these hydrous magmas is shown to be very similar beneath both Mt. Shasta and Medicine Lake volcanoes despite characteristically distinct Li isotope compositions in the magmas themselves. More evolved andesites and dacites from Mt. Shasta have δ7Li from + 2.8 to + 6.9‰ which is identical with the range obtained for HAOTs and BA lavas from Mt. Shasta. Therefore, Li isotopes do not provide evidence for any other crustal component admixed to Mt. Shasta andesites or dacites during magmatic differentiation and magma mixing in the crust.  相似文献   

12.
143Nd/144Nd,87Sr/86Sr and REE results are reported on volcanic rocks from the islands of Dominica and St. Kitts in the Lesser Antilles. Particular attention is given to the lavas and xenoliths of the Foundland (basalt-andesite) and the Plat Pays (andesite-dacite) volcanic centres on Dominica. Combined major and trace element [2] and isotope results suggest that the bulk of the andesites and dacites on Dominica, and by analogy in the rest of the arc, are produced by fractional crystallisation of basaltic magma. The differences in the erupted products of the two volcanoes do not appear to be related to any significant differences in the source rocks of the magmas.Along the arc87Sr/86Sr ratios range from 0.7037 on St. Kitts, to 0.7041–0.7047 on Dominica, and 0.7039–0.7058 on Grenada [5], and these are accompanied by a parallel increase in K, Sr, Ba and the light REE's. Moreover, compared with LIL-element-enriched and -depleted rocks from MOR and intraplate environments, the basic rocks from the Lesser Antilles are preferentially enriched in alkaline elements (K, Ba, Rb, Sr) relative to less mobile elements such as the rare earths.143Nd/144Nd varies from 0.51308 on St. Kitts, to 0.51286 on Dominica, and 0.51264–0.51308 on Grenada [5], and all these samples have relatively high87Sr/86Sr ratios compared with the main trend of Nd and Sr isotopes for most mantle-derived volcanic rocks. Alkaline elements and87Sr appear to have been introduced from the subducted ocean crust, but the results on other, less mobile elements are more ambiguous — island arc tholeiites (as on St. Kitts) do not appear to contain significant amounts of REE's, Zr, Y, etc., from the subducted oceanic crust, but such a contribution may be present in more LIL-element-enriched calc-alkaline rock types.  相似文献   

13.
Analyses of fifty-one rock samples from three stratovolcanoes in Central Japan revealed that K and Rb contents vary in a saw-toothed fashion with the growth of these volcanoes. Peaks and valleys of the saw-toothed variation pattern of Rb (and also K) increase at first and then gradually converge on constant values. This variation trend is also shown by the Rb/Sr ratio. The convergent Rb/Sr ratio (0.23–0.24) at the peaks coincides with recent estimates of the average value for continental crust. These geochemical features are well explained by the batch fractionation model. In this model, the magma reservoir lying at the top of the mantle is periodically supplied with a batch of parental magma, while the magma in it undergoes continuous crystallization and the cumulate is continuously removed by the divergent movement of the mantle. This model, working under physical conditions in the crust-mantle structure of an island arc, not only accounts for the above geochemical features, but also gives insight into the genesis of the calc-alkaline rock series and of the continental crust.  相似文献   

14.
Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80×200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occurred in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and disequilibrium mineral assemblages. In addition, some dacites and andesites contain Mg and Ni-rich olivines and/or have high MgO, Cr, Ni, Co, and Sc contents that are not in equilibrium with the host rock and indicate mixing between basalt or cumulate material and more evolved magmas. Incompatible element variations suggest that fractionation is responsible for some of the compositional range between basaltic andesite and dacite, but the rhyolites have K, Ba, Th, and Rb contents that are too low for the magmas to be generated by fractionation of the intermediate rocks. Limited Sr-isotope data support the possibility that the rhyolites may be partial melts of underlying volcanic rocks. Received March 13, 1993/Accepted September 10, 1993  相似文献   

15.
The Pleistocene volcanic rocks from northern Taiwan include the Tatun volcano group and the Chilung volcano group. Three rock types occur in this area: Tatun volcano group yield high-alumina basalt and andesites, whereas the chilung volcano group mainly consists of dacites. In addition, amphibole-rich nodules have also been found in different cruptive units of the former volcano group. Around seventy sample of various rock types have been conducted for geochemical studies, including analyses of major elements and trace elements such as Co, Cr, Cu, Li, Ni, Zn, Zr, V, Rb and Sr. Results of Al2O3, MnO, TiO2 total alkali content, MgO/ΣFeO and K2O/Na2O ratios and AMF diagram indicate that these Pleistocene volcanic rocks belong to typical calalkaline rock series. Detailed study of the trace elements reveals that these volcanic rocks are closely correlated with rocks of continental margin type with respect to Rb, Cu, Co, Ni, V and Cr contents, and K/Rb and Ni/Co ratios. These rocks are most probably derived from the fractionation of basaltic magma controlled mainly by the crystallization of amphibole and plagioclase with magnetite playing a minor role.  相似文献   

16.
Abstract Nekoma volcano forms part of the arc axis volcanic array of the North-eastern Honshu arc, Japan, which is commonly characterized by medium-K lava suites. However, Nekoma is exceptional because many of its lavas are low-K. This anomaly has been a matter of debate. Nekoma was active from 1.1 to 0.35 Ma. The volcano consists of thick andesite flows and domes associated with block and ash flow deposits produced during lava dome formation. A horseshoe-shaped collapse caldera was formed at the summit and small lava domes extruded into the caldera. Stratigraphy, published K–Ar ages, and tephrochronology define three stages of volcanic activity, about 1.1 Ma (Stage 1), 0.8–0.6 Ma (Stage 2) and 0.45–0.35 Ma (Stage 3; post caldera stage). Low-K andesites occur in all stages. Extremely low-K andesite was also associated in Stage 2 and medium-K andesite was dominant in Stage 3. In general, lavas changed from low-K to medium-K after caldera formation. Geochemical study of the Nekoma lavas shows that both low-K and medium-K lavas are isotopically similar and were derived from a common source. Adatara and Azuma volcanoes, which lie close to Nekoma, also have both low-K and medium-K andesites. However, Sr isotope ratios or temporal-spatial variations in K-level lava classification vary between the three centers. Comparisons of K suites and Sr isotope ratios with frontal arc volcanoes in North-east–Honshu suggest source heterogeneity existed in both medium- and low-K suites. The K contents of lavas and their Sr isotopes are not simply related. This requires re-examination of models for chemical variation of andesites in arcs.  相似文献   

17.
Detailed major and trace element studies of volcanic rocks from Jefferson, Rainier, and Shasta stratovolcanoes in the Cascade Range indicate that each volcano has distinct geochemical distribution patterns. Silica variation diagrams are not smooth nor, in general, continuous for any volcano. Portions of stratigraphic sections within the volcanoes exhibit compositional coherency and are interpreted as eruptive groups which were extruded over time intervals which are short compared to the lifetimes of the volcanoes. The results of this investigation indicate the leasibility of geochemically mapping eruptive groups within stratovolcanoes. Systematic compositional trends are not observed within thick (500–1000 m) eruptive groups but may occur over thicknesses of <200 m. Compositional variations within eruptive groups are commonly non-systematic and show ranges similar to the ranges observed in individual flows. Correlations between the amounts or kinds of phenocryst phases present and intra-group compositional variation is not observed. Inter-group compositional differences are sometimes accompanied by mineralogical differences. Late andesites and dacites at Rainier and Shasta are characterized by decreases in K and Rb while at Jefferson increases in these elements and other compositional changes occur in the late eruptives. Progressive fractional crystallization models do not seem capable of explaining the element distributions observed in the three volcanoes. Existing data are consistent with a model involving varying degrees of melting of some combination of amphibolite, eclogite or peridotite in or above a subduction zone with varying water contents. Segregation and sequential eruption of small batches of magma may produce the eruptive groups characterizing the volcanoes. Late mafic magmas erupted at satellite vents appear to be produced in different (deeper?) mantle source areas.  相似文献   

18.
Quaternary volcanoes in the Padang area on the west coast of Sumatra have produced two-pyroxene, calc-alkaline andesite and volumetrically subordinate rhyolitic and andesitic ash-flow tuffs. A sequence of andesite (pre-caldera), rhyolitic tuff and andesitic tuff, in decreasing order of age, is related to Maninjau caldera. Andesite compositions range from 55.0 to 61.2% SiO2 and from 1.13 to 2.05% K2O. Six K-Ar whole-rock age determinations on andesites show a range of 0.27 ± 0.12 to 0.83 ± 0.42 m.y.; a single determination on the rhyolitic ashflow tuff gave 0.28 ± 0.12 m.y.Eight 57Sr/26Sr ratios on andesites and rhyolite tuff west of the Semangko fault zone are in the range 0.7056 – 0.7066. These ratios are higher than those elsewhere in the Sunda arc but are comparable to the Taupo volcanic zone of New Zealand and calc-alkaline volcanics of continental margins. An 87Sr/86Sr ratio of 0.7048 on G. Sirabungan east of the Semangko fault is similar to an earlier determination on nearby G. Marapi (0.7047), and agrees with 87Sr/86Sr ratios in the rest of the Sunda arc. The reason for this distribution of 87Sr/86Sr ratios is unknown.The high 87Sr/86Sr ratios are tentatively regarded to reflect a crustal source for the andesites, while moderately fractionated REE patterns with pronounced negative Eu anomalies suggest a residue enriched in plagioclase with hornblende and/or pyroxenes. Generation of associated andesite and rhyolite could have been caused by hydrous fractional melting of andesite or volcanogenic sediments under adiabatic decompression.  相似文献   

19.
The Lau Basin is a marginal sea, located between the Tonga and Lau Ridges, in the southwestern Pacific. The basin is on the “inner” or concave side of the Tonga Trench-Arc system and is situated above the deep seismic zone dipping westward from the Tonga Trench. The Tonga Trench-Arc system is undoubtedly located above a zone of crustal shortening as evidenced by the deep seismicity and vulcanism. However, the geological and geophysical data give strong support to the contention that the Lau Basin has formed by crustal dilation.Rocks dredged from ridges and seamounts in the basin are sub-alkaline basalt. The average major element composition of least altered samples is: SiO2 48.8%, TiO2 1.2%, K2O 0.18%, P2O5 0.08%, H2O+ 0.30%, FeIII/FeII = 0.26,CaO/Al2O3 = 0.77. The data for Lau Basin basalt (LBB) show close similarity to data of typical oceanic ridge basalt (ORB). Trace element abundances (ppm): Ni 160, Cr 390, Sr 100, Ba < 31, Rb < 1 also resemble ORB values. K/Rb in a least altered and unfractionated sample is 860, Ba/Sr is 0.1, Ba/Rb is 8. Strontium isotope data show the only marked variance from ORB chemistry with LBB values ranging from 87Sr/86Sr=0.7020 to 0.7051. The low Sr abundances in the samples suggest the possibility of crustal Sr contamination to explain the radiogenic Sr enrichment. An alternate possibility is that the mantle source rocks were enriched in 87Sr. Variation within dredge hauls and between dredge sites may be explained by low-pressure fractional crystallization of magmas separated from the mantle at about 50 km depth.The basin probably began to open in middle to late Miocene time either by the disruption of a single andesitic island arc by splitting along its axis or by dilation of the area between two closely spaced concentric arcs. Mantle counterflow in the asthenosphere above the downgoing oceanic lithosphere slab is the probable driving force for dilation and has provided a continuous supply of parent material for the basalt of the basin floor.  相似文献   

20.

The Madang Cenozoic sodic alkaline basalt occurred in the eastern margin of the Tibetan Plateau, where is a key tectonic transform region of Tibet, North China, and Yangtze blocks. The basalts are characterized by the variation in SiO2=42%–51%, Na2O/K2O>4, belonging to the sodic alkaline basalt series. The rocks are enriched in Ba, Th, Nb, Ta, relative to a slight depletion in K, Rb in the trace and rare earth element (REE) spider diagrams that are similar to the typical oceanic island alkaline basalt. The Sr-Nd-Pb isotopic compositions suggest that they are derived from a mixed mantle reservoir. The western Qinling-Songpan tectonic region was controlled by Tibet, North China and Yangtze blocks since Cenozoic, therefore, the region was in the stage of the substance converge from the mantle to upper crust, producing a mixed mantle reservoir in the studied area. The Madang basalts occurred in the specific tectonic background, they result from partial melting of a mixed asthenospheric mantle reservoir in the western Qinling-Songpan tectonic node.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号