首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
以忻州窑矿8939工作面为工程背景,运用弹性板理论分析坚硬顶板破断期间释放的弹性能量值,并利用FLAC3D数值模拟划分工作面回采期间的高应力区域,同时根据分形理论分析微震事件的时间分布、空间分布与冲击地压的内部关联。研究结果表明:坚硬顶板断裂前,悬露顶板由于旋转下沉不断对工作面前方煤体缓慢加载,由于过程缓慢,应力与能量不断向煤岩体深部转移,不易发生冲击地压。当顶板断裂时,会瞬间释放大量的弯曲应变能,对工作面周围煤体产生强大的脉冲作用,若脉冲能量超过冲击地压的临界值,则发生冲击地压的可能性较大。且冲击地压发生之前,煤岩体处于非稳定状态,会与外界积极交换能量,此时微震事件处于活跃期,当微震能量超过一定数值或微震事件的分维值低于某临界值时,易发生冲击地压。   相似文献   

2.
精确拾取微地震事件初至是微震定位的关键技术之一。根据STA/LTA和分形维数两种微地震初至拾取方法的原理,采用理论模型数据对两种初至拾取方法进行了测试,并选取不同信噪比的实际数据从初至拾取精度、算法效率两个方面进行了对比。结果表明,对于高信噪比微震事件,两种方法都能获得精度较高的初至,但对于低信噪比微震事件,分形维数与STA/LTA比较其拾取精度相对要高。鉴此,运用STA/LTA和分形维两种算法相结合的微震事件初至拾取方法,对实际数据进行了处理,实现了微震事件初至较为准确的自动拾取。  相似文献   

3.
香炉山钨矿残采区地压灾害微震监测技术应用分析   总被引:9,自引:0,他引:9  
香炉山钨矿东区形成了形状复杂、体积巨大的采空区,地压灾害问题突出。为了确保矿山生产安全,该矿成功地建立了国内最大、最先进的48通道全数字型微震监测系统。本文简要介绍了多通道微震监测系统的组成、传感器的优化布置,分析了微震监测系统对微震事件的定位误差和效果;论文进一步对采区内微震定位事件、非定位事件进行了初步的应用研究;论文还对西区大爆破对东区地压的影响程度进行了监测。最后,论文对井下岩体破裂类型与释放的弹性波波形进行了辨识与频谱分析。初步的地压微震监测与分析结果表明,微震监测技术能对香炉山钨矿残采区进行动态的地压监测,可以预见该技术将在今后的矿山安全管理中起到更加重要的作用。  相似文献   

4.
研究由顶板-煤体-底板所构成的煤岩组合体变形破裂声发射和微震的规律,对于研究冲击机制具有重要意义。利用SANS材料试验系统、Disp-24声发射监测系统和TDS-6微震信号采集系统,对单轴受压的不同煤岩组合试样进行声发射和微震试验,得到不同组合试样在受载破坏过程中的声发射和微震信号。试验研究表明:组合试样发生冲击破坏时的声发射和微震信号的强度随试样的单轴抗压强度、冲击倾向性以及其顶板与煤层的高度比值的增加而增强;微震信号的振幅可以反映组合煤岩体的冲击倾向性强弱;微震频谱幅度的分布随着抗压强度和冲击能指数的上升而向高频移动。上述结论对指导现场冲击矿压的监测预警以及评价有着重要意义。  相似文献   

5.
孤岛综放工作面强烈的动压显现使得其发生冲击地压的可能性大大增加,通过运用微地震和电磁辐射综合监测手段分析孤岛综放工作面两次强动压显现事件,获得了工作面煤体发生冲击地压前后能量积聚与释放规律及相应微震和电磁辐射监测数据变化规律,认为工作面煤体发生冲击地压前一般存在一个短暂的能量积聚期,在能量积聚期内微震系统监测到的微震事件的次数和总能量均较少,同时能量积聚期内煤体电磁辐射强度值和脉冲数均持续升高。将工作面微震事件的沉默期以及煤体电磁辐射强度值、脉冲数的持续升高期作为冲击地压的综合前兆信息,并将其转换为量化的预警参数和指标,建立了工作面冲击地压多参数预警方法。现场实践表明,危险识别与灾害预警效果良好。  相似文献   

6.
针对综放回采工作面老顶来压时易发生冒顶冲击地压事故,某矿1305综放工作面采用波兰矿山研究总院研制的新一代SOS高精度微震监测系统,对工作面自开切眼回采开始进行全程时时连续监测。统计分析微地震事件、事件发生频率及事件总能量的周期性变化,从而推断出老顶断裂的周期性。再经过理论计算验证系统的准确性。结果表明:工作面的周期来压与矿震事件能量的周期变化存在相对应的关系; 强烈微震活动发生前有一段弱震活动时期,为强震的发生积蓄了更多的能量; 周期来压时释放的总能量在某一特定水平波动,但波动的变化不稳定性增强。该结论对工作面安全回采及预防矿震冲击地压的发生具有一定的现实指导意义。  相似文献   

7.
基于锦屏二级水电站深埋隧洞钻爆法及隧道掘进机(TBM)开挖过程中大量微震监测数据及不同等级的岩爆案例,对不同开挖方式下即时型岩爆的孕育及发生过程的能量释放展开研究,并运用分形几何原理研究微震能量分布的变化规律,得到以下结论:(1)即时型岩爆的孕育及发生过程中,岩爆区围岩岩体处于破坏加速集聚并不断扩展的过程;(2)钻爆法开挖过程中储存在岩体内的弹性应变能消耗于岩体破裂过程大于TBM开挖,而转化为岩体动能小于TBM开挖;(3)钻爆法开挖微震能量分形维度在即时型岩爆的孕育过程不断增加,岩爆临近前会增加到某个临界值以上;(4)TBM开挖即时型高等级岩爆能量分形维度值大于钻爆法开挖,并且其分形维度值可以反映低等级岩爆伴随发生的特征。  相似文献   

8.
大理岩冲击加载试验碎块的分形特征分析   总被引:1,自引:0,他引:1  
许金余  刘石 《岩土力学》2012,33(11):3225-3229
应用分形几何的方法对冲击加载试验中大理岩破碎块度分布进行统计分析。结果表明,大理岩的冲击破碎块度分布具有分形特征,采用破碎分形维数对岩石破碎过程进行定量描述,可以合理地反映大理岩冲击破碎的程度;大理岩的平均破碎块度与冲击加载速率有着较强的相关性,随着加载速率的提高迅速减小;建立了能量吸收与破碎分维的关系,从能量吸收的角度可以较好地解释破碎分维的变化规律。破碎分维是评价岩石冲击破碎块度分布的理想指标,可较为全面地反映岩石冲击破碎的全过程。  相似文献   

9.
n维自仿射分形及其在地球化学中的应用   总被引:6,自引:0,他引:6       下载免费PDF全文
申维 《地质论评》2005,51(2):208-211
分形概念应用在地球科学中来刻画地质量和物体的自相似特征。研究表明分形模型常常提供有力工具来刻画地质量和物体的基本空间分布结构。本文提出了n维自仿射分形的检验与定量评定方法。通过实例,说明n维自仿射分形的方法在实际问题中的方法和步骤,并解释了分维数的实际意义。分维数足反映区域化变量在某方向变化程度的定量指标。该方法不仅适用于地球化学金元素和银元素数据,而且还适用于其他元素和地质数据,具有普遍的意义。  相似文献   

10.
根据分形理论,以西藏樟木滑坡群为例,详细分析了滑坡活动时空结构的信息维特征和滑动带土粒度分布的分形结构特征。结果表明,滑坡活动具有很好的分形现象;滑动带土的粒度分维值一般在2~3之间,其平均值约为2.8,分维可作为描述滑动带土粒度成分的参数。在此基础上,探讨了分维的研究意义  相似文献   

11.
深埋隧洞微震活动区与岩爆的相关性研究   总被引:1,自引:0,他引:1  
基于锦屏二级水电站深埋引水隧洞和排水洞大量微震监测数据及上百个不同等级岩爆实例,研究了深埋隧洞微震活动区与岩爆之间的关系。研究结果表明:(1)微震活动分布范围主要介于掌子面后方3倍洞径至前方1.5倍洞径之间,而岩爆高发区位于掌子面后方3倍洞径以内,表明岩爆高发区与微震事件主要分布范围相吻合;(2)隧洞工程岩爆潜在风险重点关注区域是掌子面后方3倍洞径已开挖范围,以及掌子面前方1.5倍洞径施工范围;(3)微震事件及岩爆分布呈区域性集结特点,其中一部分岩爆发生于微震事件集结区内部,另一部分岩爆发生于微震事件集结区边缘,这是岩体破坏过程中所固有的现象,与微震事件集结区边缘局部应力集中密切相关。  相似文献   

12.
微地震事件不同初至拾取方法的对比分析   总被引:1,自引:0,他引:1  
微地震事件初至的精确拾取是微震时空定位的关键技术之一。简述了STA/LTA (Short–Term to Long–Term Average)、AIC (Akaike Information Criteria)、分形维数3种微地震初至拾取方法的基本原理;采用理论模型数据对不同初至拾取方法进行了方法测试效果分析;并选取不同信噪比的实际数据对初至拾取精度、算法效率两个方面进行了比较。结果显示:高信噪比时,3种方法初至拾取的精度都比较高;在信噪比降低时,分形维数法初至拾取的精度仍然较高,具有较好的抗噪性;但是,分形维数法的效率较低,且受算法原理限制,并且与AIC法很难单独拾取事件初至。因此,采用STA/LTA识别微地震事件,初步确定初至范围,然后再使用AIC方法精确拾取初至,是微地震事件初至拾取的较好方法。   相似文献   

13.
导水裂隙带发育高度是矿井水害预测的重要技术参数之一。以彬长矿区文家坡煤矿4103工作面为研究对象,利用井-地联合微震监测技术对顶板导水裂隙带发育特征进行研究。研究结果表明:深埋煤层开采时,微震事件超前工作面回采位置发育,超前影响角最大为35°,最小为28°;断层的存在降低了覆岩稳定性,相较于正常基岩,更易在回采影响下发生应力集中和破坏;断层加大了微震事件发生的超前距,而采空区则使微震事件的高密度区向其所在部位发生偏移,加剧覆岩破坏程度,增大导水裂隙带发育高度;垂向上,4103工作面监测区内的微震事件高密度区域主要集中在高程+400~+520 m,结合微震事件数量和能量分布特征,判定4103工作面垮落带发育高度为50 m,垮采比13.16,导水裂隙带发育高度为117 m,裂采比为30.79。该成果可为彬长矿区类似煤矿深埋煤层顶板导水裂隙带发育高度研究及顶板水防治提供重要依据。移动阅读   相似文献   

14.
准确预测底板采动破坏深度是承压水上采煤底板水害防治中的一个关键问题,对于防治水方案的制定至关重要。根据山西保德煤矿的地质特征与工作面布置特点,采用高精度井-孔联合微震监测技术,对81307工作面底板破坏深度开展实时监测。利用锤击方法,标定了定位参数,验证了定位精度,确保微震监测系统的定位精度能够满足防治水要求,监测期间工作面回采600 m。监测结果表明:底板破坏深度为30 m,其中在81308二号回风巷下方破坏较深,81307一号回风巷下方破坏只有15 m,工作面超前破坏距离为25 m,监测结果与相邻81306工作面利用压水试验测量的底板破坏深度基本一致。研究表明,井-孔联合微震监测技术可以获得工作面底板破坏深度及其空间分布特征,更好地为煤矿防治水服务。   相似文献   

15.
In order to determine the rock mechanics characteristics, a uniaxial compression experiment for the hard sandstone in the 6305 working face of Jining No.3 Coal Mine was designed. The experimental results show that the bending energy is weakly impacted and the bending energy index is 66 kJ. To crack into the hard roof to prevent roof formation of rock burst with the Polish hydraulic fracturing technology. According to on-site hydraulic fracturing test, hydraulic fracturing radius of 6305 working face can reach 5–15 m. Finally, there is a little vibration, and energy is mainly concentrated range from 1000 to 10,000 J from the characteristics of mine waveform and spectrum distribution through microseismic monitoring system during the fracturing process. It shows that some microseismic events induced by hard roof after hydraulic fracturing have achieved the purpose of slow relief of hard roof and prevent the occurrence of rock burst.  相似文献   

16.
中国断裂构造的分形特征及其大地构造意义   总被引:14,自引:4,他引:10  
中国大陆壳体中深大断裂的分布具有分形结构特征。大陆全境的分维值为1.493,各构造区的分维值为0.827~1.624。活动区特别是地洼区中断裂构造分维值(1.236~1.624)显著大于稳定区即地台区的分维值(0.827~1.074),并且壳体结合部位的分维值大于壳内部位。断裂构造的分维值反映了区域大地构造演化、运动历史的复杂性和构造活动的强弱性,因而可作为大地构造研究的一个定量参数。  相似文献   

17.
河北平原地区断层系的分形特征分析   总被引:1,自引:0,他引:1  
断层形成机理的复杂性和时空展布的不规则性,传统的评价方法往往很难取得令人满意的定量化结果,应用分形理论可以对断裂构造系进行定量评价,断层分维是断层数量、规模、组合方式及动力学机制的综合体现,因此分维值的大小可以作为断层构造复杂程度一个定量化指标。运用分形理论,对河北平原区主要断裂构造带进行了定量评价。得出河北平原区NNE向分维值为1.358,纬向断层系分维值为1.183,河北平原区活断层系空间分维值较高,这和研究区地震活动频繁、地质灾害多发一致。最后对河北平原区、渭河盆地和川滇断层系分形值和地震活动性进行了分析对比,发现地震空间分布和分形值的大小有对应关系,且渭河盆地、川滇的分形值大于河北平原地区,河北平原所发生的地震多沿NNE向呈带状分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号