首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hellenic plate boundary region, located in the collision zone between the Nubian/Arabian and Eurasian lithospheric plates, is one of the seismo-tectonically most active areas of Europe. During the last 15 years, GPS measurements have been used to determine the crustal motion in the area of Greece with the aim to better understand the geodynamical processes of this region. An extended reoccupation network covering whole Greece has been measured periodically in numerous GPS campaigns since the late eighties, and a continuous GPS network has been operated in the region of the Ionian Sea since 1995. In this paper, we present a new detailed high-quality solution of continuous and campaign-type measurements acquired between 1993 and 2003. During the GPS processing, a special effort was made to obtain consistent results with highest possible accuracies and reliabilities. Data of 54 mainly European IGS and EUREF sites were included in the GPS processing in order to obtain results which are internally consistent with the European kinematic field and order to allow for a regional interpretation. After an overview of the results of the IGS/EUREF sites, the results from more than 80 stations in Greece are presented in terms of velocities, time series, trajectories and strain rates. Previous geodetic, geological and seismological findings are generally confirmed and substantially refined. New important results include the observation of deformation zones to the north and to the south of the North Aegean Trough and in the West Hellenic arc region, arc-parallel extension of about 19 mm/yr along the Hellenic arc, and compression between the Ionian islands and the Greek mainland. Due to continuous long-term observations of 4–8 years, it was possible to extract height changes from the GPS time series. In Greece, we observe a differential subsidence of the order of 2 mm/yr between the northern and central Ionian islands across the Kefalonia fault zone. The differential subsidence of the central Ionian islands with respect to the northwestern Greek mainland amounts to 4 mm/yr.  相似文献   

2.
During the Neogene and Quaternary, the western Mediterranean geodynamics was apparently dominated by the nearly eastward migration of the Apenninic arc and the associated opening (spreading) of the back-arc basin (Tyrrhenian Sea). However, during the last 5 My, the collision of the arc with the Apulian platform led to a dramatic change in the tectonic setting of the area. As geological processes require a long period of time to register the displacements of the different blocks, it is indispensable to take into account the present-day motion given by space geodesy data analysis in order to better constrain the geological models.Geodetic motions were derived from Global Positioning System (GPS), Satellite Laser Ranging (SLR) and Very Long Baseline Interferometry (VLBI) observations collected from different networks. All the geodetic solutions have been computed and combined at the Centre of Space Geodesy (CGS), at Matera, Italy.The geodetic results show a NNE motion of the Adriatic plate with a small component of counter-clockwise rotation, in good agreement with the geological and geophysical observations.In the southern Tyrrhenian area, the lengthening of the Matera–Cagliari baseline should imply that convergence cannot be considered as the driving mechanism for the Apenninic subduction process. The estimated motion of Noto is in quite good agreement with the estimated motion of the African plate.  相似文献   

3.
The Abu-Dabbab area is characterized by high seismicity and complex tectonic setting; for these facts, a local geodetic network consisting of 11 geodetic benchmarks has been established. The crustal deformation data in this area are collected using the GPS techniques. Five campaigns of GPS measurements have been collected, processed, and adjusted to get the more accurate positions of the GPS stations. The horizontal velocity vectors, the dilatational, the maximum shear strains, and the principal strain rates were estimated. The horizontal velocity varies in average between 3 and 6 mm per year across the network. The results of the deformation analysis indicate a significant contraction and extension across the southern central part of the study area which is characterized by high seismic activity represented by the clustering shape of the microearthquakes that trending ENE. The north and northeastern parts are characterized by small strain rates. This study is an attempt to provide valuable information about the present state of the crustal deformation and its relationship to seismic activity and tectonic setting at the Abu-Dabbab area. The present study is the first work demonstrating crustal deformation monitoring at the Abu-Dabbab area. The time interval is relatively short. Actually, these results are preliminary results. So, the continuity of GPS measurements is needed for providing more information about the recent crustal deformation in that area.  相似文献   

4.
Modern space geodetic techniques enable deformation monitoring of continental plate interiors with high spatial and temporal coverage. Resolving data and results are currently evaluated for their application for the integrated assessment of seismic hazard and risk in Germany. This goes especially for regions where earthquakes are generally rare but high magnitudes are still not unrealistic while vulnerability of today’s society is steadily growing. The present contribution deals with the continuous monitoring of tectonic fracture systems in Germany using the GPS. The estimation of the station velocities with GPS and the resulting geodetic strain is supposed to provide additional input to the earthquake hazard assessment. Unfortunately, the low expected and currently seen velocities (<1–2 mm/year) make it extremely difficult to distinguish between noise and a tectonic signal. Because of the short observation interval the velocity uncertainties are about 2 mm/year in the horizontal components. The essential goal of this program is to provide and model highly precise deformation data and to discuss its needs for a better assessment of geological hazard, especially for the most active tectonic regions in Germany, the Rhine-Graben, the Swabian Alb, the Alpine foreland, and the Vogtland. Here we present preliminary results from 2 years of measurements at currently 150 GPS stations throughout Germany. The time span of this program has proven to be too short and the density of the station network to be not dense enough yet for reliable significant horizontal station velocities and supporting the earthquake hazard assessment.  相似文献   

5.
The seismicity and the associated seismic hazard in the central part of the Pannonian region is moderate, however the vulnerability is high, as three capital cities are located near the most active seismic zones. In our analysis two seismically active areas, the Central Pannonian and Mur-Mürz zones, have been considered in order to assess the style and rate of crustal deformation using Global Positioning System (GPS) and earthquake data.We processed data of continuous and campaign GPS measurements obtained during the years 1991–2007. Velocities relative to the stable Eurasia have been computed at HGRN, CEGRN and EPN GPS sites in and around the Pannonian basin. Uniform strain rates and relative displacements were calculated for the investigated regions. GPS data confirm the mostly left lateral strike slip character of the Mur-Mürz–Vienna basin fault system and suggest a contraction between the eastward moving Alpine-North Pannonian unit and the Carpathians.The computation of the seismic strain rate was based on the Kostrov summation. The averaged unit norm seismic moment tensor, which describes the characteristic style of deformation, has been obtained from the available focal mechanism solutions, whereas the annual seismic moment release showing the rate of the deformation was estimated using the catalogues of historical and recent earthquakes.Our analysis reveals that in the Central Pannonian zone the geodetic strain rate is significantly larger than the seismic strain rate. Based on the weakness of the lithosphere, the stress magnitudes and the regional features of seismicity, we suggest that the low value of the seismic/geodetic strain rate ratio can be attributed to the aseismic release of the prevailing compressive stress and not to an overdue major earthquake. In the Mur-Mürz zone, although the uncertainty of the seismic/geodetic strain rate ratio is high, the seismic part of the deformation seems to be notably larger than in the case of the Central Pannonian zone. These results reflect the different deformation mechanism, rheology and tectonic style of the investigated zones.  相似文献   

6.
In the context of the present study the structural pattern in the Western Thessaly Basin (Greece) has been examined, based on structural data collected from the entire study area that were further correlated to the hydrographic network. The structural pattern of the area was revealed from tectonic analysis. Additionally, the topography, stratigraphy and sedimentology of the study area were taken into account. GIS techniques were used to map the spatial distribution of the geological and tectonic features on the topographic relief of the area. The oldest structures are contractional in nature, deformed by normal faulting related to the extensional episodes initiated in Serravallian times. It is inferred that the orientation of the stress field in the area has changed several times: the N-S stress field which was dominant during Late Serravallian times changed to NW-SE (Messinian-Zanclian) up to E-W in Zanclian and subsequently to roughly NNW-SSE (in late Piacencian). The NE-SW stress that was dominant in Pleistocene became N-S in later times. In addition, some changes in orientation are also indicated for the transitional periods of the pre-mentioned extensional episodes, possibly related to local events, or as a block-related deformation. The development of the 7th order streams is probably related to the N-S extensional faulting initiated in Pliocene times, while the dominant direction of the 6th, 5th and 4th order streams is possibly connected with the presence of the NNE-SSW and NW-SE extensional faults. Finally, the lower order streams are probably related to the most recent E-W striking normal faults.  相似文献   

7.
B. Sundvoll  B.T. Larsen   《Tectonophysics》1994,240(1-4):173-189
A revised assessment of architecture and pre-rift fabric connections of the Oslo Rift has been undertaken and linked to a new appraisal of observations and data related to the initial phase of the rift evolution. In addition to half-graben segmentation, accommodation zones and transfer faults are readily identified in the linking sectors between the two main grabens and between graben segments. Axial flexures are proposed between facing half-grabens. The accommodation zones were generally sites of volcanism during rifting. Pre-rift tectonic structures played an influential role in the rift location and development. The deviant N-S axis of the Vestfold graben segment is viewed as related to pre-rift structural control through faults and shear zones. This area was probably a site of Proterozoic/Palaeozoic crustal and lithospheric attenuation.

Field evidence suggests that the rift started as a crustal sag with no apparent surface faulting in a flat and low-lying land at a time about 305–310 Ma. Volcanism, sub-surface sill intrusion and faulting started about simultaneously some time after the initial sag (300–305 Ma). Faulting and basaltic volcanism were initially localized to transfer faults along accommodation zones and a NNW-SSE transtensional zone along the eastern margin of the incipient Vestfold graben segment. This transtensional zone was probably created by right-lateral simple shear tracing pre-rift structures in response to a regional stress field with the tensional axis normal and the maximum compressional axis parallel to the NNE-SSW-trending rift axis.  相似文献   


8.
In order to better constrain and define the microseismic activity at the north Evoikos Gulf and its surrounding area we deployed an onshore/offshore seismic array consisting of 31 three-component seismic digital stations. The array was active from 30 June to 24 October 2003, and covered an area of 2500 km2. We located more than 2000 seismic events ranging from 0.7 to 4.5 ML by using six stations as a minimum in order to define the foci parameters. Recorded seismicity delineated three major zones of deformation: from south to north, the Eretria–Parnis–eastern Corinthiakos zone, the Psachna–Viotia zone, and the Northern Sporades–North Evia–Bralos zone. Alignments of the recorded seismicity follow the tectonic trends and their orientation in the above zones. The whole area accommodates the stress field between the North Aegean Trough and the Corinthiakos Gulf. Rate of deformation intensifies from north to south, as revealed also by historical and instrumental seismicity. The successive change of orientation between the two stress fields fragments the crust in relatively small units and the fault systems developed do not permit the generation of major earthquakes in the north Evoikos area and its immediate vicinity. This is also supported by the instrumental seismicity of the last century. Larger events reported in historical times are probably overestimated.Most seismic activity is crustal. Subcrustal events were recorded mainly below the Lichades area and are interpreted as the consequence of the subduction of the Ionian oceanic lithosphere below the Hellenides. The Lichades volcano is the most northern end of the Hellenic volcanic arc.At present the highest seismic activity is associated with the Psachna region of north Evia that has been continuously active since 2001. Considering, however, the development of the seismic activity during the last decade, there has been a sequence of large events, i.e., Parnis in 1999, Skyros in 2001 and Psachna in 2001–2003. This demonstrates the fact that the tectonic deformation in all this area is intense and important for the accommodation of the stress field of the North Aegean Trough to that of the Corinthiakos Rift.  相似文献   

9.
Comparison of historical and of post-seismic triangulation data is used to model vertical crustal movements in the vicinity of the Kapareli Fault (or the Alkynonides earthquakes North Fault), one of the two antithetic normal faults which reactivated during the 1981, Gulf of Corinth (Ms = 6.7) earthquakes. This fault is characterized by a much smaller geomorphological signature than the South (or Perachora) fault of the same seismic sequence. Analysis of geodetic data on the basis of polynomial filtering and elastic dislocation modelling, as well as analysis of structural and coastal change data permits us to conclude that the upper bound in the uncertainty level of most of the available elevation changes is 20–30 cm, usually lower than the corresponding dislocation signal. In addition, the available geodetic data have a systematic pattern and are consistent with structural data. For this reason they permit more precise constraints on the geometry and the role of the Kapareli Fault (or the Alkyonides earthquakes North Fault): its total length is estimated about 17 km, about 50% longer than its surface trace; about 30–40 cm subsidence of its hanging wall, as well as at least 15 cm maximum uplift of its footwall is also inferred. This new evidence suggests that although in the long-term the Kapareli fault may represent a rather secondary, antithetic fault to the Alkyonides earthquakes South (Perachora) fault, during the 1981 earthquakes it probably had a more important structural role.  相似文献   

10.
A monitoring GPS array recently developed in Japan can yield nationwide maps of active inland tectonic zones (ATZs) on a mesoscale, approximately 70 to several hundred kilometers in lateral extent. But it has been difficult to characterize ATZs in Japan, as they are in fact operational on multiple scales and our efforts are often hindered by various irregularities in the data. The key to overcoming these problems would be to gain an insight into the available data before any precise kinematic modeling is performed with indefinite assumptions. In this study, horizontal velocity fields, deduced from the nationwide GPS array, were treated with a set of techniques in robust smoothing and exploratory data analysis that brought out exceptionally powerful mesoscale ATZs, and made them easier to characterize. The resolved ATZs were then retrospectively monitored to study their regional and temporal variations, using a set of approx. 840 observation stations, about 30 km apart, for a 4-year series of fixed observation time-intervals, 810 days each. The smoothing operation involved three steps: (1) imputation of the velocity fields for the purpose of anti-aliasing, (2) robust smoothing of the velocity fields with the median operative, and (3) visualization of deformation-rate distributions in several coordinate independent parameters, and post-filtering. The geometrical resolvability of mesoscale ATZs was confirmed by calibrating the smoothing scheme against synthetic tectonic boundary models before it was applied to the case study in Japan. ATZs in Japan, which are essentially visible as systematic deviations in the velocity fields on the International Terrestrial Reference Frame (ITRF) and as strain rate anomalies, were highlighted sharply along some known tectonic zones, chains of active volcanoes, and areas above low seismic velocity anomalies in the crust and upper mantle, all of which generally paralleled the offshore trench axes. The geometrical agreements among the mapped ATZs and the physical anomalies in the crust are presumably due to their common structural weakness on the mesoscale. In the four main islands of Japan, all but 30–40% of the strain rate anomalies persisted during the entire 6 years of the case study period, while the rest sporadically appeared or disappeared in a period from several months to a few years. The transient shifts in the deformation rates were remarkably synchronous with some nearby major tectonic episodes: large earthquakes and slow events. Differential plate coupling strengths along the subduction zones can also be inferred from the persistent pattern of rotational strain rate anomalies forming clockwise and counterclockwise pairs along the Pacific. Our empirical observations suggest that the first-order features of interseismic crustal deformations in Japan can be characterized as collateral processes behaving in response to fluctuations of the tectonic stresses on multiple scales, likely influenced by changes of plate coupling strengths on the contiguous subduction faults.  相似文献   

11.
GPS results from 25 stations in Macedonia measured in 1996 and 2000 show that Macedonia moves SSE relative to Eurasia essentially as a single crustal piece along with parts of westernmost Bulgaria. Geological studies show active N–S normal faults and two NNW-striking right-lateral faults in western Macedonia, and NW-trending left-lateral faults SE Macedonia, with a region in central Macedonia essentially devoid of active faults. Distribution of seismic activity supports the geological studies. However, the GPS results cannot discriminate the active faulting, except perhaps in the northern part of Macedonia in the Skopje and adjacent areas, where active ~NS extension occurs. Slip-rates on the strike-slip faults must be low, in the range of 0–2 mm/year. There is a progressive increase in GPS velocities southward in northern Greece toward the North Anatolian fault zone, across which the velocities increase and change direction dramatically.  相似文献   

12.
We compare new and literature data concerning the integrated deformation rate since 18 ka for the central Apennines with deformation rate data derived from a 6-year GPS campaign. We constructed topographic profiles across the majority of the active faults in the area. We derived deformation rate data from displaced post-glacial sediments and slopes associated with the last major glacial retreat that occurred in the region about 18 kyr ago. Paleoseismic investigations in this region clearly show that offset of these features is the cumulative effect of repeated surface faulting earthquakes with magnitudes in the range 5.5 ≤ Ms ≤ 7.0. A cumulative throw-rate diagram, incorporating both our values and the values extracted from the literature (i.e., previously published trenching studies, scarp profiles and offset terraces), is presented providing a regional picture of the spatial deformation rate distribution in the central Apennines, during the latest Pleistocene and Holocene. By converting cumulative throw-rates into heave rates, we calculate maximum extension rates of ca. 2 mm/year at the location of the same transect where 6 ± 2 mm/year has been measured with GPS over 6 years. This discrepancy between geodetic and geological fault slip-rate data implies that we have to be cautious whenever we use GPS data for seismic hazard assessment purposes or when attempting to reconstruct the tectonic processes in an area, because geodetic data may be unrepresentative of the longer-term deformation rates. On the other hand, this discrepancy may provide insights into the mechanics of the seismic cycle. We discuss various scenarios that may explain the mis-match between long-term and short-term measurements.  相似文献   

13.
The tectonic deformation of the Lipari–Vulcano complex, one of the most important active volcanic areas of the Mediterranean region, is studied here through the analysis of 10 years (1996–2006) of GPS data from both three permanent and 13 non‐permanent stations. This area can be considered crucial for the understanding of the interaction between the Eurasian and African plates in the Mediterranean area, and, in general, this work emphasizes a methodological approach, already applied in other areas worldwide ( J. Geophys. Res., 1996, 101 , 27 957 ; J. Geodyn., 1999, 27 , 213 ) where geodetic data and strain parameters maps of critical areas can help to improve our understanding of their geodynamical aspects. In this framework, this study is aimed at providing a kinematic deformation model on the basis of the dense geodetically estimated velocities of the Lipari–Vulcano complex. In particular, the observed deformation pattern can be described by a combination of (1) the main N–S regional compression and (2) a NNE–SSW compression with a small right‐lateral strike slip component acting along a tectonic structure trending N°40W between the two islands. This pattern was inspected through a simplified synthetic model.  相似文献   

14.
鸳鸯湖矿区位于宁夏回族自治区宁东煤田,该次GPS作业利用3个三等三角点作为起算数据,2个四等三角点作为检核数据,进行网平差及高程拟合。外业数据质量检验结果表明其重复基线及同、异步环闭合差均小于限差,符合规范要求。内业数据处理采用广播星历网基线处理,无约束平差、约束平差基线分量改正绝对值均小于限差值。6个水准点的网平差高程拟合结果证实GPS高程精度优于三角高程。测量成果经宁夏测绘产品质量监督检查站检查,成果精度达到《全球定位系统(GPS)测量规范》(GB/T18314-2001)的有关精度要求。说明鸳鸯湖矿区清水营井田GPS控制网的成果可靠。  相似文献   

15.
A variance-covariance analysis is made concerning the crustal strain parameters deduced from triangulation results. The coordinate difference method is treated, the algorithm of the analysis being valid for either free or constrained network adjustments. The importance of the correlations entering into the calculation of the standard deviations of strains is emphasized, showing how even poor geodetic results can be sometimes useful in crustal strain analyses.  相似文献   

16.
Modern geodetic techniques have developed rapidly in recent years, providing reliable observation data and new effective approaches, and greatly enhancing studies of the Tibetan geodynamics. For instance, the well-known GPS technique has been employed to measure seismic slips for many faults in the Tibetan Plateau. GPS data agree well with the hypothesis of a thickening crust and eastward mass flow. Moreover, absolute gravimetric data have been applied to interpret geophysical phenomena such as crust movement, co-seismic gravity change, GIA, and ground water change. The satellite gravity mission GRACE launched in 2002 provided global gravity models with unprecedentedly high precision and high spatial resolution. It has been used in implementing temporal gravity changes and improving our knowledge of the Earth’s interior, including lithosphere dynamics, mantle viscosity and rheology, plateau uplift, and subduction processing. It is noteworthy that gravity presents unique advantages for the study of Tibetan geodynamics because of its sensitivity to mass migration and dynamic redistribution. To date, great advances have been made in applying modern geodetic data in studying dynamic changes of Tibetan plateau. For instance, the horizontal displacement field from GPS data revealed dynamical characteristics of the present-day Tibetan plateau. The combination of gravity anomalies and topographic data describe the tectonic characteristics of Tibetan plateau. The combination of gravity data and GPS data show present properties of the Tibetan plateau such as crust thickening, Moho’s subsidence, and plateau uplift. GRACE data were used to estimate the distribution of ice/snow melting.  相似文献   

17.
The Aegean region including western Turkey, mainland Greece, and the Hellenic Arc is the most seismological and geodynamical active domain in the Alpine Himalayan Belt. In this study, we processed 3 years of survey-mode GPS data and present the analysis of a combination of geodetic and seismological data around Izmir, which is the third most populated city in Turkey. The velocities obtained from 15 sites vary between 25 mm/yr and 28 mm/yr relative to the Eurasian plate. The power law exponent of earthquake size distribution (b-value) ranges from 0.8 to 2.8 in the Izmir region between 26.2°E and 27.2°E. The lowest b-value zones are found along Karaburun Fault (b = 0.8) and, between Seferihisar and Tuzla Faults (b = 0.8). A localized stress concentration is expected from numerical models of seismicity along geometrical locked fault patches. Therefore, areas with lowest b-values are considered to be the most likely location for a strong earthquake, a prediction that is confirmed by the 2005 Mw = 5.9 Seferihisar earthquake sequences, with epicentres located to the south of the Karaburun Fault. The north–south extension of the Izmir area is corroborated by extension rates up to 140 nanostrain/yr as obtained from our GPS data. We combined the 3-year GPS velocity field with the published velocity field to determine the strain rate pattern in the area. The spatial distribution of b-value reflects the normal background due to the tectonic framework and is corroborated by the geodetic data. b-Values correlate with strain pattern. This relationship suggests that decrease of b-values signifies accumulating strain.  相似文献   

18.
We performed geodetic strain rate analyses in southern Italy, using new GPS velocities. Two-dimensional strain and rotation rate fields were estimated and results show that most of the shortening is distributed in the northern Sicily offshore. Extension becomes more evident and comparable with shortening on the eastern side of the same margin, and greater in the eastern Sicily offshore. Principal shortening and extension rate axes are consistent with long-term geological features: seismic reflection profiles show both active compressive and extensional faults affecting Pleistocene strata. We show evidence for contemporaneous extension and transtension in the Cefalù Basin. Combining geodetic data and geological features point to the coexistence of independent geodynamic processes, i.e., the active E–W backarc spreading in the hangingwall of the Apennines subduction zone and shortening along the southern margin of the Tyrrhenian backarc basin operated by the NNW-motion of Africa relative to Eurasia.  相似文献   

19.
A multiyear solution of the SIRGAS-CON network was used to estimate the strain rates of the earth surface from the changing directions of the velocity vectors of 140 geodetic points located in the South American plate. The strain rate was determined by the finite element method using Delaunay triangulation points that formed sub-networks; each sub-network was considered a solid and homogeneous body. The results showed that strain rates vary along the South American plate and are more significant on the western portion of the plate, as expected, since this region is close to the subduction zone of the Nazca plate beneath the South American plate. After using Euler vectors to infer Nazca plate movement and to orient the velocity vectors of the South American plate, it was possible to estimate the convergence and accommodation rates of the Nazca and South American plates, respectively. Strain rate estimates permitted determination of predominant contraction and/or extension regions and to establish that contraction regions coincide with locations with most of the high magnitude seismic events. Some areas with extension and contraction strains were found to the east within the stable South American plate, which may result from different stresses associated with different geological characteristics. These results suggest that major movements detected on the surface near the Nazca plate occur in regions with more heterogeneous geological structures and multiple rupture events. Most seismic events in the South American plate are concentrated in areas with predominant contraction strain rates oriented northeast-southwest; significant amounts of elastic strain can be accumulated on geological structures away from the plate boundary faults; and, behavior of contractions and extensions is similar to what has been found in seismological studies.  相似文献   

20.
青藏高原现今岩石圈的三维应变   总被引:2,自引:1,他引:1  
根据质量守恒原理,建立恒定体积条件下青藏高原岩石圈三维应变计算模型,模型以GPS资料提供的水平位移速率作为地表的边界约束.计算结果表明,青藏高原现今岩石圈的变形仍以南北向挤压缩短增厚为主,东西向伸展吸收的南北缩短量<30%.高原岩石圈深部的变形总体遵循粘滞性应变模型.综合层析成像资料和钾质、过碱性钾质火山作用的时空分布规律,提出岩石圈脉动增厚-减薄的高原隆升机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号