首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
影响我国的重大台风风暴潮时空分布   总被引:1,自引:0,他引:1  
侯京明  于福江  原野  付翔 《海洋通报》2011,30(5):535-539
统计了1949-2009年 间发生在我国大陆沿海的38次达到红色预警级别的重大台风风暴潮过程,分析了其在空间、时间上的分布规律.分析结果表明:红色台风风暴潮灾害的发生次数呈上升趋势,且多发生在7-9月间,9月最多:长江口到福建泉州一带沿海和珠江口到海南岛东北部一带沿海是红色台风风暴潮灾害的高风险区.  相似文献   

2.
本文基于城市安全韧性三角形模型,构建韧性城市视角下的风暴潮灾害综合风险评价框架,采用2011—2020年福建省33个沿海县(区、市)数据,通过城市适灾韧性评价指标体系,科学评价福建沿海城市适灾韧性水平时空分异特征,借助地理信息分析工具,综合风暴潮灾害危险性、脆弱性和城市韧性的评价结果,实现福建省域尺度风暴潮灾害综合风险区划。结果表明:(1)福建省2020年沿海城市适灾韧性水平从高到低依次为:福州、厦门、漳州、泉州、宁德、莆田;(2)随着各沿海城市适灾韧性水平的稳步提升,福建省风暴潮灾情等级指数呈下降趋势;(3)风暴潮综合风险I级区主要分布在莆田的兴化湾、湄洲湾沿岸;(4)在灾害防御建议方面,应重点关注河口、喇叭型湾口等地区,应重点防范北部路径和中部路径的台风风暴潮,应因地制宜制定海洋防灾减灾对策和韧性城市建设规划。  相似文献   

3.
利用2001—2020年福建沿海赤潮事件记录资料和自然灾害风险判定方法,根据赤潮成灾面积、持续时间、危害类型、渔业直接经济损失等指标综合计算赤潮灾害指数。基于自然断点法,对赤潮灾害指数进行Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级等4个灾害级别分等定级。系统分析了福建沿海赤潮生物种类、时空分布特征和演变规律。结果表明:(1)2001—2020年福建沿海赤潮以灾害程度较轻的Ⅰ级和Ⅱ级为主,灾害程度较重的Ⅲ级和Ⅳ级仅占总次数的8.9%,但其造成的渔业直接经济损失达总损失的95.0%。(2)赤潮暴发次数和面积总体呈现下降趋势,但Ⅲ级和Ⅳ级灾害频次呈现波动特征。(3)季节尺度上表现为单波峰特征,5—6月是赤潮灾害最为严重的时段,赤潮暴发次数、面积和持续时间占总体的比例分别为73.3%、84.6%和74.9%,Ⅲ级和Ⅳ级灾害占总次数的95.2%。(4)空间尺度上,福州、宁德、厦门沿海赤潮累计次数和规模较大,但Ⅲ级和Ⅳ级赤潮灾害主要分布在泉州以北的福建沿海,泉州以南的福建海域赤潮灾害级别整体较低。(5)2001—2020年福建沿海赤潮原因种逐渐增多,硅藻占比减小、甲藻占比升高,有毒赤潮主要出现在宁德、福州、泉州海域,以米氏凯伦藻(Karenia mikimotoi)引发居多。(6)硅藻赤潮主要暴发在峡湾和海湾海域,而甲藻赤潮在峡湾、海湾和开阔的近岸海域均易暴发,近年来甲藻赤潮暴发位置呈现由福建北部向南部沿海扩张的趋势。引起这些变化的原因据推测与全球气候变化及福建近岸海域环境的变化密切相关。  相似文献   

4.
福建台风灾害特征及其防御对策研究   总被引:7,自引:0,他引:7  
根据历史台风路径、强度和灾害实况等资料,对影响福建的台风灾害划分为较大、重大和特大3个等级,同时提出按照3个等级进行科学设防,从而提高防灾抗灾的主动性,减少盲目性。研究表明,(1)在1949~2005年的57 a里,福建共出现特大台风灾害40次,平均约3年出现2次;在所有台风移动路径中,直接登陆型台风的致灾风险最大,闽南-粤东地区是历史上我国大陆遭受特大台风灾害最频繁的地区,平均每年有1个西太平洋台风穿过巴士海峡后在闽南-粤东沿海登陆。(2)地形作用极易在迎风坡形成台风暴雨中心,戴云山脉东南侧的德化、安溪、南安和永春的台风暴雨平均雨量分别是崇武(沿海站)的3.1,2.8,2.7和2.7倍。(3)防台减灾是一个涉及全社会方方面面的科学-社会系统工程,只有政府组织领导,依靠行政手段,动员全社会防灾抗灾,才能把灾害减轻到最小程度。  相似文献   

5.
文章利用沧州海洋站观测资料对本次台风风暴潮过程进行分析,发现天文高潮时沧州沿海出现了远超警戒潮位的高潮位,而后"达维"中心带来的东北大风使沧州沿海风暴增水值达到最大。对建国以来6次北上影响沧州的致灾台风进行了路径相似分析,获取影响台风风暴潮强度的重要因素,可为研究本地区台风风暴潮规律,提高预警报准确度,减少风暴潮灾害带来的损失提供经验和参考。  相似文献   

6.
本文对美国飓风中心资料进行了分析,结果表明,我国仅福建宁德.浙江宁波之间沿海及台湾岛可能受到超强台风的袭击,其他沿海区域则未见有超强台风影响。随着气候不断变暖,极端天气经常被刷新,超强台风很有可能在120℃以西出现。28℃以上的海温、高空小的风速切变、有利的环境背景、强的暖洋流形成的高海温区、低纬度星罗棋布的岛屿及南半球强冷空气活动形成强的向北越赤道气流等因素是西北太平洋比其他洋域发生更多热带气旋、更多超强台风活动的重要原因。  相似文献   

7.
通过利用双向嵌套中尺度非静力数值预报模式MM5V3对0519号台风"龙王"登陆福建前后过程(2005年10月2日08:00-3日08:00)进行了数值模拟,在模拟效果较理想的基础上利用其输出的高时空分辨率资料对"龙王"台风登陆福建沿海前后结构特征进行分析.结果表明:(1)登陆前后除暖中心在台风中心最强外,其它物理量的极值一般都出现在离台风中心100~200km区域;(2)台风登陆福建沿海后虽然在热力、动力和环流上还保留有热带气旋的一些分布特征,但在强度和空间分布上已经发生了明显的变化.  相似文献   

8.
为分析我国易遭受台风灾害的13个省、市、自治区渔业台风灾害风险,文章从台风气象灾害的危险性、渔业系统的敏感性、脆弱性和抗灾减灾能力4要素的内涵出发,共选取18个指标,建立完备的渔业台风灾害风险评价指标体系,并运用熵值法确定各指标的权重,计算出各地区的渔业台风灾害风险指数。同时根据风险指数的大小,将这些地区分为4个等级:高风险区为广东和福建,中风险区为海南、山东、浙江和江苏,低风险区为江西、广西、辽宁和安徽,微风险区为河北、上海和天津。最后根据研究结果,提出区别化加大渔业基础设施投资力度、重视渔业主产区风险管理以及差异化推广政策性渔业保险的建议,旨在为渔业台风灾害的有效管理提供参考。  相似文献   

9.
董剑希  李涛  侯京明 《海洋通报》2016,35(3):331-339
分析20世纪50年代以来福建省7个有代表性验潮站的近700站次台风风暴潮过程,利用建立的风暴潮评价指标,对福建省风暴潮的时空分布特征开展研究。结果表明:福建省风暴潮主要出现在7月至10月,其中以8月最多,9月次之;风暴潮灾害主要发生8月和9月,以9月居多。各级风暴潮中,增水为50~100 cm的风暴潮次数约占70%,沿海各区域中,风暴潮频发区和严重区为闽江口,风暴潮次数明显偏多、偏强;风暴潮灾害频发区为闽江口,风暴潮灾害严重区则依次为闽江口和宁德区域。1954-2008年间,风暴潮发生次数总体呈现上升趋势;风暴潮灾害呈较明显的上升趋势。  相似文献   

10.
浅析0519号"龙王"台风风暴潮特征   总被引:1,自引:0,他引:1  
吴昊 《海洋预报》2006,23(Z1):84-90
0519台风是今年正面袭击福建沿海的台风之一,全省沿海各验潮站台风过程增水均较小,但福建省却发生了百年一遇的重大灾情。鉴于以上特点,本文对0519号台风风暴潮过程、灾害情况进行回顾,总结台风风暴潮增水特征,从风场、气压场、天气形势(高空、地面、卫星云图)几个方面初步分析增水较小原因,总结经验,为以后同类型台风的预报提供参考依据。即应考虑较小增水,但却不能对台风造成的灾害掉以轻心,而应考虑大浪和暴雨可能造成的重大灾情。  相似文献   

11.
鳚亚目 4 科 33 属 95 种,鰕虎鱼亚目 5 科 98 属 259 种,刺尾鱼亚目 5 科 11 属 65 种,鲈形目 19亚目 104 科 535 属 1799 种。  相似文献   

12.
Soil-sized particulates have been collected on board ship by a mesh technique from the lower troposphere of the North, Equatorial and South Atlantic Ocean, northern and southern Indian Ocean, South and East China Sea and various coastal localities.Spectrographic analysis reveals that, on average, the particulates have concentrations of Mn, Ni, Co, Ga, Cr, V, Ba, and Sr which are of the same order of magnitude as those in average crustal material. In contrast, the average concentrations of Pb, Sn, and Zn are one order of magnitude higher than those in average crustal material.Within this “world-wide” average there are significant geographical variations in the distributions of Pb, Sn, and Zn which may be related to anthropogenic sources.On the basis of trace-element distributions lower tropospheric soil-sized marine particulates have been divided into four genetic components; local, zonal, inter-zonal, and global. The proportions of these components vary geographically, and each component may have both a natural and an anthropogenic fraction.  相似文献   

13.
14.
15.
16.
Tautog, Tautoga onitis, is an abundant species of fish in estuaries of the northeastern United States. Planktonic tautog larvae are abundant in summer in these estuaries, but there is little information on rates of growth of tautog larvae feeding on natural assemblages of food in the plankton. We examined abundance and growth of larval tautog and environmental factors during weekly sampling at three sites along a nearshore‐to‐offshore transect in Buzzards Bay, Massachusetts, USA during summer 1994. This is the first study of a robust sample size (336 larvae) to estimate growth rates of field‐caught planktonic tautog larvae feeding on natural diets, using the otolith daily‐growth‐increment method. The study was over the entire summer period when tautog larvae were in the plankton. The sampling sites contrasted in several environmental variables including temperature, dissolved oxygen (DO), and chlorophyll a concentration. There was a temporal progression in the abundance of tautog larvae over the summer, in relation to location and temperature. Tautog larvae were first present nearshore, with a pronounced peak in abundance occurring at the nearshore sites during the last 2 weeks in June. Larvae were absent at this time further offshore. From late June through August, larval abundance progressively decreased nearshore, but increased offshore although never approaching the abundance levels observed at the nearshore sites. The distribution and abundance of tautog larvae appeared to be related to a nearshore‐to‐offshore seasonal warming trend and a nearshore decrease in DO. Otoliths from 336 larvae ranging from 2.3 to 7.7 mm standard length had otolith increment counts ranging from 0 to 19 increments. Growth of larval tautog was estimated at 0.23 mm·day?1, and length of larvae prior to first increment formation was estimated at 2.8 mm indicating that first increment formation occurs 3–4 days after hatching at 2.2 mm. Despite spatial and temporal differences in environmental factors, there were no significant differences in growth rates at any of three given sites over time, or between sites. Because larval presence only occurred at a narrow range of temperature (17–23.5 °C) and DO (6.5–9.3 mg·l?1), in situ differences in growth did not appear to be because of differences in larval distribution and abundance patterns relative to these parameters.  相似文献   

17.
Results of trace-metal analyses of water samples obtained during a cruise with the Soviet R.V. “Akademik Kurchatov” in the Indian Ocean are presented. The determinations were performed on board with atomic absorption spectrophotometry after a two-stage dithiocarbamate—Freon extraction procedure. Trace-metal concentrations found are in the same range as those found recently for similar open-ocean areas by other workers. The values for lead and zinc are probably high due to contamination. Vertical profiles indicate biogenic processes as controlling factors for the increase of cadmium, copper and nickel concentrations with depth. Iron shows an irregular depth distribution as a result of large random variations in concentration.  相似文献   

18.
In June 1981, dissolved Zn, Cd, Cu, Ni, Co, Fe, and Mn were determined from two detailed profiles in anoxic Baltic waters (with extra data for Fe and Mn from August 1979). Dramatic changes across the O2H2S interface occur in the abundances of Cu, Co, Fe, and Mn (by factors of ?100). The concentrations of Zn, Cd, and Ni at the redox front decrease by factors between 3 to 5.Equilibrium calculations are presented for varying concentrations of hydrogen sulfide and compared with the field data. The study strongly supports the assumption that the solubility of Zn, Cd, Cu, and Ni is greatly enhanced and controlled by the formation of bisulfide and(or) polysulfide complexes. Differences between predicted and measured concentrations of these elements are mainly evident at lower ΣH2S concentrations.Cobalt proved to be very mobile in anoxic regions, and the results indicate that the concentrations are limited by CoS precipitation. The iron (Fe2+) and manganese (Mn2+) distribution in sulfide-containing waters is controlled by total flux from sediment-water interfaces rather than by equilibrium concentrations of their solid phases (FeS and MnCO3). The concentrations of these metals are therefore expected to increase with prolonged stagnation periods in the basin.  相似文献   

19.
Concentrations of dissolved nutrients (NO3, PO4, Si), germanium species, arsenic species, tin, barium, dimethylsulfide and related parameters were measured along the salinity gradient in Charlotte Harbor. Phosphate enrichment from the phosphate industry on the Peace River promotes a productive diatom bloom near the river mouth where NO3 and Si are completely consumed. Inorganic germanium is completely depleted in this bloom by uptake into biogenic opal. The GeSi ratio taken up by diatoms is about 0·7 × 10?6, the same as that provided by the river flux, confirming that siliceous organisms incorporate germanium as an accidental trace replacement for silica. Monomethylgermanium and dimethylgermanium concentrations are undetectable in the Peace River, and increase linearly with increasing salinity to the seawater end of the bay, suggesting that these organogermanium species behave conservatively in estuaries, and are neither produced nor consumed during estuarine biogenic opal formation or dissolution. Inorganic arsenic displays slight removal in the bloom. Monomethylarsenic is produced both in the bloom and in mid-estuary, while dimethylarsenic is conservative in the bloom but produced in mid-estuary. The total production of methylarsenicals within the bay approximately balances the removal of inorganic arsenic, suggesting that most biological arsenic uptake in the estuary is biomethylated and released to the water column. Dimethylsulfide increases with increasing salinity in the estuary and shows evidence of removal, probably both by degassing and by microbial consumption. An input of DMS is observed in the central estuary. The behavior of total dissolvable tin shows no biological activity in the bloom or in mid-estuary, but does display a low-salinity input signal that parallels dissolved organic material, perhaps suggesting an association between tin and DOM. Barium displays dramatic input behavior at mid-salinities, probably due to slow release from clays deposited in the harbor after catastrophic phosphate slime spills into the Peace River.  相似文献   

20.
Exploration for oil at Northstar has been long and costly. Northstar leases were first acquired in 1979 at a joint state and federal sale by Shell Oil, Amerada Hess, and Texas Eastern. The Northstar Unit is 6 mi offshore and about 4 mi northeast of the Point McIntyre Field. Oil was first discovered in Shell's Seal Island 1 in 1983. Five additional appraisal wells were drilled (1983-1986) from two man-made gravel islands in 40 ft of water. Early engineering estimates put the cost of development at $ 1.6 billion. In February 1995, BP Exploration (Alaska) acquired a 98 % interest in the Northstar Unit from Amerada Hess and Shell Oil. When developed by BP, Northstar will be the first oil produced from federal leases in Alaska. To date, the oil industry has invested in excess of $ 140 million in exploration and appraisal operations. An additional $ 90 million was spent on lease bonus bids. The giant Prudhoe Bay and Kuparuk Fields lie along the Barrow Arch. This arch is bounded to the north by a rift margin that deepens into the present-day offshore region. Northstar is located among a series of down-stepping faults off this northern rift margin of the Prudhoe Kuparuk high. The structure is a gently south-dipping northwest-trending faulted anticline. The crest of the structure is located near 10,850 ft subsea. The primary reservoir is the Ivishak Formation (325 ft thick) of the Sadlerochit Group. This is the same primary reservoir at Prudhoe Bay, approximately 12 mi to the south. At Northstar the Ivishak is a high-energy, coarse-grained conglomeratic facies of the Ivishak Formation. The primary lithology is a pebbly chert to quartz conglomerate with occasional sandstone. This very high net to gross reservoir appears to contain no regionally continuous permeability barriers. Cementation has reduced primary porosity to less than 15 %. Accurate porosity estimates are difficult to make due to the coarse-grained nature of the lithology and the presence of kaolinite and microporous chert. Permeability is highly variable, but averages 10 to 100 mDarcies. Oil is a very light and volatile 42 API crude with approximately 2,100 ft3 of gas per stock tank barrel of oil. This oil is very different from the heavier oils (26) found to the south in Prudhoe Bay. Estimated recoverable oil reserves range from 100 to 160 million barrels. A free-standing drilling rig is required at Northstar because the reserves are beyond extended-reach drilling techniques from shore-based facilities. The current development plan is to expand the existing Seal Island to about 5 acres. This is significantly less than Endicott's 40-acre island. The proposed drilling and produc tion island will be accessed by summer barges and winter ice roads. Oil, gas, and water will be processed at a stand-alone facility and then sent to shore via a subsurface pipeline. Northstar will have the first Arctic subsea pipeline in Alaska to transport oil to shore facilities (TAPS). Preliminary tests in Spring 1996 were very successful in demonstrating the technology to successfully bury a subsea pipeline safely in the Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号