首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several shales and oils ranging in age from 3 million to 2·7 billion years have been investigated for their hydrocarbon content using gas chromatography and mass spectrometry as primary analytical tools. From the Soudan Shale from Minnesota (2·7 × 109yr) the C18, C19, C20 and C21 isoprenoid-alkanes were obtained. The Antrim shale from Michigan (about 265 × 106 yr) yielded the C16, C18, C19, C20 and C21 isoprenoids, as well as a C16 iso-alkane and the C18 and C19 cyclohexyl n-alkanes. The San Joaquin Oil (30 × 106 yr) and the Abbott Rock Oil (3 × 106 yr) contained the C16, C18, C19, C20 and the C18, C19, C20 and C21 isoprenoids respectively. In addition, a series of iso-alkanes (C16−C18), anteiso-alkanes (C16−C18) and n-alkylcyclohexanes (C16−C19) as well as a C21 isoprenoid were obtained from the Nonesuch Seep Oil (1 × 109 yr). This analysis provides a comprehensive picture of the types of biogenic hydrocarbons found in oils and shales of widely differing ages, and in particular, the finding of isoprenoid alkanes in the Soudan Shale furnishes evidence for life processes at that period of geological time.  相似文献   

2.
We investigate the use of a ductile material with temperature-sensitive viscosity for thermomechanical modelling of the lithosphere. First, we consider the scaling of mechanical and thermal properties. For a normal field of gravity, the balance of stresses and body forces sets the stress scale, in proportion to the linear dimensions and the densities. The equation of thermal conduction sets the time scale. The activation enthalpy for creep sets the temperature scale; but the thermal expansivity provides an additional constraint on this temperature scale.

Gum rosin appears to be a suitable material for lithospheric modelling. We have measured its flow properties, at various temperatures, in a specially designed rotary viscometer with unusually low machine friction. The rosin is almost Newtonian. Strain rate depends upon stress to the power n, where 1.0 <n < 1.14. The viscosity varies over 5 orders of magnitude, from about 102 Pa s at 80°C, to about 107 Pa s at 40°C. The activation enthalphy is thus about 250 kJ/mol. Measured with a needle probe, the thermal conductivity is 0.113 ± 0.001 W m−1K−1; the thermal diffusivity, (6±3) ×10−7 m2 s−1. Calculated from X-ray profiles, the thermal expansivity is about 3 × 10−4 K−1. These thermal and mechanical properties make gum rosin suitable for thermomechanical models, where linear dimensions scale down by a factor of 106; time, by 1011; viscosity, by 1017; and temperature change, by 101.  相似文献   


3.
We determine seismic strain rate of tectonic earthquakes along the Central America Volcanic Arc. We then compare this result to those obtained from earthquakes related to the convergence of the Cocos and Caribbean plates and to earthquakes in the back-arc region of northern Central America.

The seismic strain-rate tensor for shallow-focus earthquakes along the Central America volcanic arc since 1700, has a compressive eigenvector with a magnitude of 0.7 × 10−8 year−1, and oriented in a 357° azimuth. The extensive eigenvector is oriented in a 86° azimuth, with a magnitude of 0.82 × 10−8 year−1. When only Centroid Moment-tensor solutions (CMT) are considered, the respective eigenvectors are 1.2 × 10−8 year−1 and 1.0 × 10−8 year−1.

The compressive eigenvector from the seismic strain-rate tensor for earthquakes along the Cocos-Caribbean convergent margin is 2.0 × 10−8 year−1, plunging at 25°, and oriented in a 29° azimuth. Its magnitude and direction are similar to those of the compressive eigenvector for earthquakes along the volcanic arc. The extensive eigenvector along the convergent margin, on the other hand, has a large vertical component. The compressive and extensive eigevenvectors are 4.9 × 10−8 year−1 and 4.6 × 10−8 year−1, using only CMTs as the database.

Earthquakes along the grabens of northern Central America yield a seismic strain-rate tensor whose extensive eigenvector has a magnitude of 2.4 × 10−8 year−1, oriented in a 109° azimuth. Magnitude and direction are similar to those of the extensive eigenvector for earthquakes along the volcanic arc. The compressive eigenvector along the grabens is practically vertical.

Similarities in magnitudes and directions for compressive and extensive eigenvectors suggest to us that the strain field along the Central America volcanic arc is the result of compression along the convergent Cocos-Caribbean margin, and extension in the back-arc region, along the grabens of northern Central America. This field is resolved as strike-slip faulting along the arc.  相似文献   


4.
Garnet–melt trace element partitioning experiments were performed in the system FeO–CaO–MgO–Al2O3–SiO2 (FCMAS) at 3 GPa and 1540°C, aimed specifically at studying the effect of garnet Fe2+ content on partition coefficients (DGrt/Melt). DGrt/Melt, measured by SIMS, for trivalent elements entering the garnet X-site show a small but significant dependence on garnet almandine content. This dependence is rationalised using the lattice strain model of Blundy and Wood [Blundy, J.D., Wood, B.J., 1994. Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454], which describes partitioning of an element i with radius ri and valency Z in terms of three parameters: the effective radius of the site r0(Z), the strain-free partition coefficient D0(Z) for a cation with radius r0(Z), and the apparent compressibility of the garnet X-site given by its Young's modulus EX(Z). Combination of these results with data in Fe-free systems [Van Westrenen, W., Blundy, J.D., Wood, B.J., 1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am. Mineral. 84, 838–847] and crystal structure data for spessartine, andradite, and uvarovite, leads to the following equations for r0(3+) and EX(3+) as a function of garnet composition (X) and pressure (P):
r0(3+) [Å]=0.930XPy+0.993XGr+0.916XAlm+0.946XSpes+1.05(XAnd+XUv)−0.005(P [GPa]−3.0)(±0.005 Å)
EX(3+) [GPa]=3.5×1012(1.38+r0(3+) [Å])−26.7(±30 GPa)
Accuracy of these equations is shown by application to the existing garnet–melt partitioning database, covering a wide range of P and T conditions (1.8 GPa<P<5.0 GPa; 975°C<T<1640°C). DGrt/Melt for all 3+ elements entering the X-site (REE, Sc and Y) are predicted to within 10–40% at given P, T, and X, when DGrt/Melt for just one of these elements is known. In the absence of such knowledge, relative element fractionation (e.g. DSmGrt/Melt/DNdGrt/Melt) can be predicted. As an example, we predict that during partial melting of garnet peridotite, group A eclogite, and garnet pyroxenite, r0(3+) for garnets ranges from 0.939±0.005 to 0.953±0.009 Å. These values are consistently smaller than the ionic radius of the heaviest REE, Lu. The above equations quantify the crystal-chemical controls on garnet–melt partitioning for the REE, Y and Sc. As such, they represent a major advance en route to predicting DGrt/Melt for these elements as a function of P, T and X.  相似文献   

5.
Strontium chemical diffusion has been measured in albite and sanidine under dry, 1 atm, and QFM buffered conditions. Strontium oxide-aluminosilicate powdered sources were used to introduce the diffusant and Rutherford Backscattering Spectroscopy (RBS) used to measure diffusion profiles. For the 1 atm experiments, the following Arrhenius relations were obtained:
Sanidine (Or61), temperature range 725–1075°C, diffusion normal to (001): D=8.4 exp(−450±13 kJ mol−1/RT) m2s−1. Albite (Or1), temperature range 675–1025°C, diffusion normal to (001): D=2.9 × exp(−224±11 kJ mol−1/RT) m2s−1.
The alkali feldspars in this and earlier work display a broad range of activation energies for Sr diffusion, which may be a consequence of the thermodynamic non-ideality of the alkali feldspar system and/or the mixed alkali effect.  相似文献   

6.
Hydrothermal gases offshore Milos Island, Greece   总被引:3,自引:0,他引:3  
Hydrothermal fluids emerge from the seafloor of Paleohori Bay on Milos. The gases in these fluids contain mostly CO2 but CH4 concentrations up to 2% are present. The stable carbon isotopic composition of the CO2 (near 0%) indicates an inorganic carbon source (dissociation of underlying marine carbonates). The carbon and hydrogen isotopes of most CH4 samples are enriched in the heavy species (δ13C = −9.4 to −17.8‰; δD = −102 to −189‰) which is believed to be characteristic for an abiogenic production of CH4 by CO2-reduction (Fischer-Tropsch reactions). Depletions in the deuterium content of three CH4 samples (to −377%) are probably caused by unknown subsurface rock alteration processes. Secondary hydrogen isotope exchange processes between methane, hydrogen and water are most likely responsible for calculated unrealistic methane formation temperatures.

We show that excess helium, slightly enriched in 3He, is present in the hydrothermal fluids emerging the seafloor of Paleohori Bay. When the isotopic ratio of the excess component is calculated a 3He/4Heexcess of 3.6 · 10−6 is obtained: This indicates that the excess component consists of about one third of mantle helium and two thirds of radiogenic helium. We infer that the mantle-derived component has been strongly diluted by radiogenic helium during the ascent of the fluids to the surface.  相似文献   


7.
Rosanna De Rosa  Paola Donato  Guido Ventura   《Lithos》2002,65(3-4):299-311
Upper Pollara eruption products (13 ka, Salina Island, Italy) include both homogeneous and heterogeneous pumices resulting from mixing/mingling processes between an HK andesite and a high-SiO2 rhyolite. Representative samples of heterogeneous pumices are collected and analyzed in order to check the correspondence between glass composition and morphological features of the mingling/mixing structures. Image analysis techniques are applied and eight grey color ranges (classes) are extracted from high-resolution scans of pumice. Class 1 (lighter colors) and class 8 (darker colors) show end-member glass compositions, i.e. HK andesite and high-SiO2 rhyolite, respectively. These two classes show spot- to cluster-like morphological structures. Intermediate classes show an HK dacitic to rhyolitic composition and a banding- to fold-like morphology. Fractal analysis by box-counting of the boundary pattern of eight grey classified images is performed over a length scale of 0.028–1.8 cm. Fractal dimension D is between 1.01 and 1.84. Coupled fractal analysis and geochemical data reveal that D increases as the degree of magma interaction (homogenization) increases. This feature well fits the results from numerical models on the convective mixing of fluids driven by thermal convection. We conclude that the increase of D observed in the Upper Pollara samples reflects the transition from fractal mixing to homogenization. End-member magmas (HK andesite and high-SiO2 rhyolite) represent isolated mixing regions, while homogenized magmas represent active mixing regions. In the analyzed pumices, isolated and active mixing regions coexist at scales between 10−4 and 10−2 m. Morphological and compositional features of the Upper Pollara pumices result from turbulence.  相似文献   

8.
As a result of the collapse of a mine tailing dam, a large extension of the Guadiamar valley was covered with a layer of pyritic sludge. Despite the removal of most of the sludge, a small amount remained in the soil, constituting a potential risk of water contamination. The kinetics of the sludge oxidation was studied by means of laboratory flow-through experiments at different pH and oxygen pressures. The sludge is composed mainly of pyrite (76%), together with quartz, gypsum, clays, and sulphides of zinc, copper, and lead. Trace elements, such as arsenic and cadmium, also constitute a potential source of pollution. The sludge is fine grained (median of 12 μm) and exhibits a large surface (BET area of 1.4±0.2 m2 g−1).

The dissolution rate law of sludge obtained is r=10−6.1(±0.3) [O2(aq)]0.41(±0.04) aH+0.09(±0.06) gsludge m−2 s−1 (22 °C, pH=2.5–4.7). The dissolution rate law of pyrite obtained is r=10−7.8(±0.3) [O2(aq)]0.50(±0.04) aH+0.10(±0.08) mol m−2 s−1 (22 °C, pH=2.5–4.7). Under the same experimental conditions, sphalerite dissolved faster than pyrite but chalcopyrite dissolves at a rate similar to that of pyrite. No clear dependence on pH or oxygen pressure was observed. Only galena dissolution seemed to be promoted by proton activity. Arsenic and antimony were released consistently with sulphate, except at low pH conditions under which they were released faster, suggesting that additional sources other than pyrite such as arsenopyrite could be present in the sludge. Cobalt dissolved congruently with pyrite, but Tl and Cd seemed to be related to galena and sphalerite, respectively.

A mechanism for pyrite dissolution where the rate-limiting step is the surface oxidation of sulphide to sulphate after the adsorption of O2 onto pyrite surface is proposed.  相似文献   


9.
Janos L. Urai 《Tectonophysics》1985,120(3-4):285-317
Cylindrical samples of polycrystalline carnallite (KMgCl3, 6H2O) were deformed in a triaxial apparatus at 60°C, at confining pressures between 0.1 and 31 MPa and at strain rates between 10−4 and 10−8 s−1. In a number of cases, small amounts of saturated carnallite brine were added. Samples without added brine deform by intracrystalline slip, mechanical twinning, cracking, and by frictional sliding on crack surfaces. Stress-strain curves of these samples are strongly dependent on confining pressure. Addition of brine has a dramatic effect on both microstructural development and mechanical properties. Grain-boundary migration is strongly enhanced. At lower strain rates, additional intracrystalline effects start to appear, together with the onset of solution transfer. Rapid compaction in samples deformed with added brine causes high fluid pressures to develop. At higher strain rates addition of brine results in a decrease of the flow stress by a factor of two. This weakening will increase even further at strain rates below about 10−9 s−1, when solution transfer becomes rate controlling. It is argued that deformation of carnallite in nature is adequately described by the flow law found for samples deformed with added brine.  相似文献   

10.
Depth profiles of in situ-produced cosmogenic nuclides, including 10Be (T1/2=1.5×106 years) and 26Al (T1/20.73×106 years), in the upper few meters of the Earth's crust may be used to study surficial processes, quantifying denudation and burial rates and elucidating mechanisms involved in landform evolution and soil formations. In this paper, we discuss the fundamentals of the method and apply it to two lateritic sequences located in African tropical forests.  相似文献   

11.
Art F. White   《Chemical Geology》2002,190(1-4):69-89
Chemical weathering gradients are defined by the changes in the measured elemental concentrations in solids and pore waters with depth in soils and regoliths. An increase in the mineral weathering rate increases the change in these concentrations with depth while increases in the weathering velocity decrease the change. The solid-state weathering velocity is the rate at which the weathering front propagates through the regolith and the solute weathering velocity is equivalent to the rate of pore water infiltration. These relationships provide a unifying approach to calculating both solid and solute weathering rates from the respective ratios of the weathering velocities and gradients. Contemporary weathering rates based on solute residence times can be directly compared to long-term past weathering based on changes in regolith composition. Both rates incorporate identical parameters describing mineral abundance, stoichiometry, and surface area.

Weathering gradients were used to calculate biotite weathering rates in saprolitic regoliths in the Piedmont of Northern Georgia, USA and in Luquillo Mountains of Puerto Rico. Solid-state weathering gradients for Mg and K at Panola produced reaction rates of 3 to 6×10−17 mol m−2 s−1 for biotite. Faster weathering rates of 1.8 to 3.6×10−16 mol m−2 s−1 are calculated based on Mg and K pore water gradients in the Rio Icacos regolith. The relative rates are in agreement with a warmer and wetter tropical climate in Puerto Rico. Both natural rates are three to six orders of magnitude slower than reported experimental rates of biotite weathering.  相似文献   


12.
We assessed the accumulation of uranium (VI) by a bacterium, Bacillus subtilis, suspended in a slurry of kaolinite clay, to elucidate the role of microbes on the mobility of U(VI). Various mixtures of bacteria and the koalinite were exposed to solutions of 8 × 10− 6 M- and 4 × 10− 4 M-U(VI) in 0.01 M NaCl at pH 4.7. After 48 h, the mixtures were separated from the solutions by centrifugation, and treated with a 1 M CH3COOK for 24 h to determine the associations of U within the mixture. The mixture exposed to 4 × 10− 4 M U was analyzed by transmission electron microscope (TEM) equipped with EDS. The accumulation of U by the mixture increased with an increase in the amount of B. subtilis cells present at both U concentrations. Treatment of kaolinite with CH3COOK, removed approximately 80% of the associated uranium. However, in the presence of B. subtilis the amount of U removed was much less. TEM–EDS analysis confirmed that most of the U removed from solution was associated with B. subtilis. XANES analysis of the oxidation state of uranium associated with B. subtilis, kaolinite, and with the mixture containing both revealed that it was present as U(VI). These results suggest that the bacteria have a higher affinity for U than the kaolinite clay mineral under the experimental conditions tested, and that they can immobilize significant amount of uranium.  相似文献   

13.
We present results of computations on the interaction of solid-phase electrum–argentite–pyrite (weight ratios 210−5/ 210−3/1 and 210−5/410−2/1) association with Cl-containing aqueous moderately acid solutions (0.5m NaCl, pH = 3.08) at 300 °C and 500 bars. These data are a physicochemical basis for predicting the geochemical behavior of Au and Ag during the hydrothermal-metasomatic transformation of Au-Ag-pyrite. We also propose a technique of study of this process based on the phase equilibria of the subsystem Au–Ag–S with the aqueous solution at different liquid/solid (l/s) ratios, with the use of new graphic diagrams. The relationship of the composition of the solid-phase association with l/s ratio in real boundary conditions (Au = 17 ppm, mAu/mAg = 10–3.57–10–2.28) is shown. The maximum l/s values for complete leaching of gold and silver (l/smax = 200–800) are estimated. It has been established that argentite is the first to dissolve when mAu/mAg(s) > mAu/mAg(sol), and electrum, when mAu/mAg(s) < mAu/mAg(sol).

The experimental results showed that at 300 °C, the conversion of electrum (NAu = 300‰) nonequilibrated with pyrite into an Au-richer form (NAu = 730‰) and argentite follows an intricate kinetic scheme. Using the Pilling-Bedwords kinetic equation for processing data yielded the process rate constant K = 2.8(±0.5)10−5 g2cm−4day−1. With this equation, the time of the complete conversion of 200 μm thick flat gold grains is 604 days. These data evidence a significant role of kinetic factors in hydrothermal-metasomatic processes involving native gold, which requires combination of thermodynamic and kinetic approaches on the construction of geologo-genetic models for hydrothermal sulfide formation.  相似文献   


14.
A decrease in temperature (ΔT up to 45.5 °C) and chloride concentration (ΔCl up to 4.65 mol/l) characterises the brine–seawater boundary in the Atlantis-II, Discovery, and Kebrit Deeps of the Red Sea, where redox conditions change from anoxic to oxic over a boundary layer several meters thick. High-resolution (100 cm) profiles of the methane concentration, stable carbon isotope ratio of methane, and redox-sensitive tracers (O2, Mn4+/Mn2+, Fe3+/Fe2+, and SO42−) were measured across the brine–seawater boundary layer to investigate methane fluxes and secondary methane oxidation processes.

Substantial amounts of thermogenic hydrocarbons are found in the deep brines (mostly methane, with a maximum concentration up to 4.8×105 nmol/l), and steep methane concentration gradients mainly controlled by diffusive flow characterize the brine–seawater boundary (maximum of 2×105 nmol/l/m in Kebrit Deep). However, locally the actual methane concentration profiles deviate from theoretical diffusion-controlled concentration profiles and extremely positive δ13C–CH4 values can be found (up to +49‰ PDB in the Discovery Deep). Both, the actual CH4 concentration profiles and the carbon-13 enrichment in the residual CH4 of the Atlantis-II and Discovery Deeps indicate consumption (oxidation) of 12C-rich CH4 under suboxic conditions (probably utilizing readily available—up to 2000 μmol/l—Mn(IV)-oxihydroxides as electron acceptor). Thus, a combined diffusion–oxidation model was used to calculate methane fluxes of 0.3–393 kg/year across the brine–seawater boundary layer. Assuming steady-state conditions, this slow loss of methane from the brines into the Red Sea bottom water reflects a low thermogenic hydrocarbon input into the deep brines.  相似文献   


15.
The production rate of 38Ar in meteorites—P(38)—has been determined, as a function of the sample's chemical composition, from 81Kr-Kr exposure ages of four eucrite falls. The cosmogenic 78Kr/83Kr ratio is used to estimate the shielding dependence of P(38).

From the “true” 38Ar exposure ages and the apparent 81Kr-Kr exposure ages of nine Antarctic eucrite finds, terrestrial ages are calculated. They range from about 3 × 105 a (Pecora Escarpment 82502) to very recent falls (Thiel Mountains 82502). Polymict eucrites from the Allan Hills (A78132, A79017 and A81009) have within the limits of error the same exposure age (15.2 × 106 a) and the same terrestrial age (1.1 × 105 a). This is taken as strong evidence that these meteorites are fragments of the same fall. A similar case are the Elephant Moraine polymict eucrites A79005, A79006 and 82600 with an exposure age of 26 × 106 a and a terrestrial age of 1.8 × 105 a. EETA79004 may be different from this group because its exposure age and terrestrial age are 21 × 106 a and 2.5 × 105 a, respectively.

The distribution of terrestrial ages of Allan Hills meteorites is discussed. Meteorites from this blue ice field have two sources: Directly deposited falls and meteorites transported to the Allan Hills inside the moving Antarctic ice sheet. During the surface residence time meteorites decompose due to weathering processes. The weathering “half-life” is about 1.6 × 105 a. From the different age distributions of Allan Hills and Yamato meteorites, it is concluded that meteorite concentrations of different Antarctic ice fields need different explanations.  相似文献   


16.
We present a database and a graphical analysis of published experimental results for dissolution rates of olivine, quartz plagioclase, clinopyroxene, orthopyroxene, spinel, and garnet in basaltic and andesitic melts covering a range of experimental temperatures (1100–1500°C) and pressures (105 Pa-3.0 GPa). The published datasets of Donaldson (1985, 1990) and Brearly and Scarfe (1986) are the most complete. Experimental dissolution rates from all datasets are recalculated and normalized to a constant oxygen basis to allow for direct comparison of dissolution rates between different minerals. Dissolution rates (ν) range from 5·10−10 oxygen equivalent moles (o.e.m.) cm−2 s−1 for olivine in a basaltic melt to 1.3·10−5 o.e.m. cm−2 s−1 for garnet in a basaltic melt. Values of ln ν are Arthenian for the experiments examined and activation energies range from 118 to 1800 kJ/o.e.m. for quartz and clinopyroxene, respectively.

The relationship between calculated A/RT for the dissolution reactions, where A is the thermodynamic potential affinity, and values of ν is linear for olivine, plagioclase, and quartz. We interpret this as strong evidence in support of using calculated A as a predictor of ν for, at least, superliquidus melt conditions.  相似文献   


17.
Far-from-equilibrium batch dissolution experiments were carried out on the 2000–500, 500–250, 250–53 and 53–2 μm size fractions of the mineral component of the B horizon of a granitic iron humus podzol after removal of organic matter and secondary precipitates. The different size fractions were mineralogically and chemically similar, the main minerals present being quartz, alkali and plagioclase feldspar, biotite and chlorite. Specific surface area increased with decreasing grain size. The measured element release rates decreased in the order 53–2>>>2000–500>500–250>250–53 μm. Surface area normalised element release rates from the 2000–500, 500–250 and 250–53 μm size fractions (0.6–77×10−14 mol/m2/s) were intermediate between literature reported surface area normalised dissolution rates for monomineralic powders of feldspar (0.1–0.01×10−14 mol/m2/s) and sheet silicates (100×10−14 mol/m2/s) dissolving under similar conditions. Element release rates from the 53–2 μm fraction (400–3000×10−14 mol/m2/s) were a factor of 4–30 larger than literature reported values for sheet silicates. The large element release rate of the 53–2 μm fraction means that, despite the small mass fraction of 53–2 μm sized particles present in the soil, dissolution of this fraction is the most important for element release into the soil. A theoretical model predicted similar (within a factor of <2) bulk element release rates for all the mineral powders if observed thicknesses of sheet silicate grains were used as input parameters. Decreasing element release rates with decreasing grain size were only predicted if the thickness of sheet silicates in the powders was held constant. A significantly larger release rate for the 53–2 μm fraction relative to the other size fractions was only predicted if either surface roughness was set several orders of magnitude higher for sheet silicates and several orders of magnitude lower for quartz and feldspars in the 53–2 μm fraction compared to the other size fractions or if the sheet silicate thickness input in the 53–2 μm fraction was set unrealistically low. It is therefore hypothesised that the reason for the unpredicted large release rate from the 52–3 μm size fraction is due to one or more of the following reasons: (1) the greater reactivity of the smaller particles due to surface free energy effects, (2) the lack of proportionality between the BET surface area used to normalise the release rates and the actual reactive surface area of the grains and, (3) the presence of traces quantities of reactive minerals which were undetected in the 53–2 μm fraction but were entirely absent in the coarser fractions.  相似文献   

18.
The highly siderophile elements (HSE's: Ru, Rh, Pd, Re, Os, Ir, Pt and Au) and those elements with distribution coefficients between Fe-rich metal and silicate phases which exceed 104. The large magnitude of these distribution coefficients makes them exceedingly difficult to measure experimentally. We describe a new experimental campaign aimed at obtaining reliable values of DMmets/sil melt for selected HSE's indirectly, by measuring the solubilities of the pure metals (or simple HSE alloys) in haplobasaltic melts as a function of oxygen fugacity.

Preliminary results for Pd, Au, Ir and Re indicate that the HSE's may dissolve in silicate melts in unusually low valence states, e.g., 2+ for Ir and 1+ for the others. These unusual valence states may be important in understanding the geochemical properties of the HSE's. Inferred values of DMmet/sil melt from the solubility data at 1400°C and IW −1 are 107 for Pd and Au, and 109−1012 for Ir. Metal/silicate partition coefficients are thus confirmed to be very large, and are also different for the different HSE's.

A review of the abundance of the HSE's in the Earth's upper mantle shows that they are all present at 0.8% of chondritic, i.e. they have the same relative abundance, and the ratios of their concentrations are chondritic (e.g., Re/Os). Both the low degree of depletion (compared to the high values of DMmet/sil melt) and the chondritic relative abundances support the idea that the mantle's HSE's were added in a “late veneer” after the cessation of core formation. Sulfur is even more depleted in the mantle relative to CI chondrites than the HSE's: this implies a late veneer which was depleted in volatile elements, and which was added to a mantle stripped of S. Since considerable S dissolves in silicate melt, this further implies that core formation in the Earth either occurred under P−T conditions below the solicate solidus, or, if the process occurred over a range of temperatures in a cooling Earth, then the process continued down to conditions below the silicate solidus.

The chondritic relative abundances of the HSE's in the upper mantle argue for a chemically unstratified primitive mantle, unless the late veneer was mixed only into the upper mantle.  相似文献   


19.
The effect of microorganisms on Fe precipitation rates at neutral pH   总被引:4,自引:0,他引:4  
The effect of microorganisms on Fe precipitation rates at neutral pH in the field was examined. The studied area was a cave having Fe-stalactites composed mainly of ferrihydrite and associated microorganisms. The microorganisms were covered with ferrihydrite. Water associated with stalactites was slightly supersaturated with respect to ferrihydrite, and had a dissolved oxygen concentration of 2 ppm, a pH of 6, and an Fe concentration of approximately 14 ppm. Fe precipitation rates were estimated from decreases in Fe concentrations in water during flowing through the Fe-stalactites. The estimated Fe precipitation rate in the field ranges from 6.8×10−8 to 4.0×10−7 mol/l/s. These values are in good agreement with bulk estimates of Fe-stalactite growth rates derived from the length increase (1.3 cm) of one formation over 30 days. The estimated Fe precipitation rates are faster by about four orders of magnitude than expected inorganic precipitation rates. On-site Fe precipitation experiments with sterilized and unsterilized Fe-stalactites and without Fe-stalactites indicate that microorganisms are the controlling factor accelerating Fe precipitation rates at neutral pH. These results suggest that microbially accelerated Fe precipitation rates are more likely related to exopolysaccharides and microbial surface properties than metabolic precipitation mechanisms.  相似文献   

20.
K. Hinz 《Tectonophysics》1973,20(1-4):295-302
Within the frame of the German-French project ANNA-1970, two long refraction profiles were investigated north and south of the island of Majorca.

For the southern Balearic Basin an oceanic crust can be derived from the travel-time curves consisting of a 4.0 km thick Cenozoic sedimentary layer with: Vp = 2.35 (km/sec) + 0.35 (sec−1) × Z (km) and a 5 km thick layer with: Vp = 4.0 (km/sec) + 0.28 (sec−1) × Z (km)

The transition to the upper mantle takes place at a depth of 12 km. Directly south of Majorca a crustal thickening was measured which may be caused by the process of crustal shortening. P]In the northern Balearic Basin a faulted transitional type of crust has been observed indicating probably an embryonic and juvenile ocean expansion.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号