首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable isotopes, 2Hwater, 18Owater as well as 18Osulphate and 34Ssulphate, were used to study the flow system of shallow groundwater and soil water at the base area of a former leaching heap at the uranium mining area of Ronneburg, Germany. The flow paths and water‐retention times were estimated by comparison of δ2H and δ18O values in groundwater and soil water to the δ2H and δ18O signature of precipitation, giving distinctive inputs of summer or winter precipitation. The points of measuring the groundwater were divided into three categories with different flow conditions: rapid flow, stagnant conditions and a transition zone by hierarchical cluster analysis of δ2H and δ18O values of groundwater. The transit time of groundwater in the rapid flow area is less than 6 months, whereas water in the stagnant zone is stored for at least 1 year. In soil water, a clear response to different input signals is detectable only in the 30‐cm horizon (retention time is about 6 months), whereas at deeper levels a mixing with older water is taking place. The isotopic composition of the dissolved sulphate was used to identify oxidation of sulphides as the source of sulphate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Forest canopies alter the amount and isotopic composition of precipitation reaching the forest floor. Thus retention, evaporation and transport processes in forest canopies, and their effects on water isotopes, are key to understanding forest water cycling. Using a two-year isotope dataset from a mixed beech/spruce forest in Zurich, Switzerland, we assessed the isotopic offsets between precipitation, throughfall and stemflow. We also analysed how these offsets affect estimates of the fraction of soil water that is derived from winter precipitation. Throughfall was typically enriched in heavy isotopes compared to precipitation, but isotopically lighter than stemflow, with average δ2H of −64.3 ‰, −59.9 ‰ and − 56.3 ‰ in precipitation, throughfall and stemflow, respectively. The differences between beech and spruce were rather small compared to the seasonal differences in precipitation isotopes. Isotopic offsets between precipitation and throughfall/stemflow were smaller during the spring and summer months (March through August) than during fall and winter (September through February). Bulk and mobile soil waters at 10 and 40 cm showed smaller seasonal variations than those in precipitation, throughfall and stemflow, and were isotopically lighter than recent precipitation, with the largest offsets occurring during the summer months (June through August) for bulk soil waters. Thus, bulk soil waters at both depths contain a mixture of precipitation from previous events and seasons, with over-representation of isotopically lighter winter precipitation. Mobile soil waters were more similar to recent precipitation than bulk soil waters were. Throughfall isotopes were slightly heavier than precipitation isotopes, resulting in different sinusoidal fits for seasonal isotopic cycles in precipitation and throughfall. These differences lead to small underestimates in the fraction of soil water originating from winter precipitation, when open-field precipitation rather than throughfall is used as the input data. Together our results highlight the importance of isotope measurements in throughfall and stemflow for the assessment of precipitation seasonality and water cycling across forested landscapes.  相似文献   

3.
Understanding the water use characteristics and water relationship of coexisting vegetation in a mixed-species plantation of trees and shrubs is crucial for the sustainable restoration of degraded arid areas. This study investigated the water use characteristic of coexisting sand-binding vegetation combinations in the sierozem habitat (Populus przewalskii Maxim namely Populus-S and Caragana liouana) and aeolian sandy soil habitats (Populus przewalskii Maxim namely Populus-A and Salix psammophila) of the desert steppe. By analysing the δ2H and δ18O isotopes in xylem, soil water, groundwater and precipitation, a Bayesian MixSIAR model was employed to quantitatively assess the water utilization characteristics of plants. Throughout the growing season, in the sierozem habitat, C. liouana exhibits the highest efficiency in utilizing soil moisture above 60 cm (53.45%) and displays adaptable water use strategies. In contrast, Populus-A predominantly relies on deep soil moisture below 60 cm plus groundwater (63.89%). In the aeolian sandy soil habitat, both Populus-A and S. psammophila similarly favour deep soil moisture below the 60 cm soil plus groundwater (66.77% and 67.60%, respectively). During the transition period from the dry to the wet seasons, although both Populus-A and S. psammophila in the aeolian sandy soil habitat shifted their water sources from deeper to shallower ones, there was considerable overlap in the water sources used by Populus-A and S. psammophila. This overlap led to competition for water resources and exacerbated the depletion of deep soil moisture in both seasons. Conversely, in the sierozem habitat, the partitioning of water sources between Populus-S and C. liouana facilitated the allocation and utilization of water resources between the two species. The findings highlight the need for species-specific consideration in water resource allocation within mixed-species plantations of trees and shrubs, which is crucial for sustainable vegetation restoration in sand-binding ecosystems.  相似文献   

4.
Global warming has leaded to permafrost degradation, with potential impacts on the runoff generation processes of permafrost influenced alpine meadow hillslope. Stable isotopes have the potential to trace the complex runoff generation processes. In this study, precipitation, hillslope surface and subsurface runoff, stream water, and mobile soil water (MSW) at different hillslope positions and depths were collected during the summer rainfall period to analyse the major flow pathway based on stable isotopic signatures. The results indicated that (a) compared with precipitation, the δ2H values of MSW showed little temporal variation but strong heterogeneity with enriched isotopic ratios at lower hillslope positions and in deeper soil layers. (b) The δ2H values of middle-slope surface runoff and shallow subsurface flow were similar to those of precipitation and MSW of the same soil layer, respectively. (c) Middle-slope shallow subsurface flow was the major flow pathway of the permafrost influenced alpine meadow hillslope, which turned into surface runoff at the riparian zone before contributing to the streamflow. (d) The slight variation of δ2H values in stream water was shown to be related to mixing processes of new water (precipitation, 2%) and old water (middle-slope shallow subsurface flow, 98%) in the highly transmissive shallow thawed soil layers. It was inferred that supra-permafrost water levels would be lowered to a less conductive, deeper soil layer under further warming and thawing permafrost, which would result in a declined streamflow and delayed runoff peak. This study explained the “rapid mobilization of old water” paradox in permafrost influenced alpine meadow hillslope and improved our understanding of permafrost hillslope hydrology in alpine regions.  相似文献   

5.
This study examined the weekly water vapour isotopic composition (δ18Ov) in Thailand. The water vapour was cryogenically collected from eight sites across the country. Two observational samples were collected over one 24-h period each week (a daytime and a night-time sample), from September 2013 to September 2014. The primary aim was to investigate the environmental factors influencing water vapour isotopes. The results revealed differences in water vapour isotopic values between day and night samples. Three periods of depleted δ18Ov were associated with large-scale convective systems in September, December, and May. The statistical relationship between the climate variables and water vapour isotopes indicated that the amount of precipitation and relative humidity were the primary controls on both diurnal and seasonal isotopic variability. The temperature did not affect the δ18Ov, mainly because the atmospheric processes are a function of vertical convection rather than temperature in tropical regions. The water vapour deuterium excess (d-excess) showed greater variability in 2013 than in 2014. The d-excess variation reflected the differences in convection occurring in the day and night. In addition, the vapour phase data were combined with the local meteoric water line to identify the local water vapour line and the interaction between the isotopic composition of water vapour and liquid water. The water vapour isotopic patterns paralleled the precipitation isotopes on rainy days because of equilibrium isotopic exchange. Water vapour and precipitation were isotopically similar under low humidity but showed greater differences from each other under wetter conditions. The study results provide insight into water vapour isotopic characteristics in tropical regions and constrain the role of large-scale atmospheric processes relative to isotopic variability of water vapour in Thailand and nearby countries.  相似文献   

6.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   

7.
Stable water isotopes (δ18O and δ2H) are an important source signature for understanding the hydrological cycle and altered climate regimes. However, the mechanisms underlying atmospheric water vapour isotopes in the northeast Qinghai‐Tibetan Plateau of central Asia remain poorly understood. This study initially investigated water vapour isotopic composition and its controls during the premonsoon and monsoon seasons. Isotopic compositions of water vapour and precipitation exhibited high variability across seasons, with the most negative average δ18O values of precipitation and the most positive δ18O values of water vapour found during the premonsoon periods. Temperature effect was significant during the premonsoon period but not the monsoon period. Both a higher slope and intercept of the local meteoric water line were found during the monsoon period as compared with in the premonsoon period, suggesting that raindrops have been experienced a greater kinetic fractionation process such as reevaporation below the cloud during the premonsoon periods. The δ2H and δ18O signatures in atmospheric water vapour tended to be depleted with the occurrence of precipitation events especially during the monsoon period and probably as a result of rainout processes. The monthly average contribution of evaporation from the lake to local precipitation was 35.2%. High d‐excess values of water vapour were influenced by the high proportion of local moisture mixing, as indicated by the gradually increasing relative humidity along westerly and Asian monsoon trajectories. The daily observation (observed ε) showed deviations from the equilibrium fractionation factors (calculated ε), implying that raindrops experienced substantial evaporative enrichment during their descent. The average fraction of raindrops reevaporation was estimated to be 16.4± 12.9%. These findings provide useful insights for understanding the interaction between water vapour and precipitation, moisture sources, and help in reconstructing the paleoclimate in the alpine regions.  相似文献   

8.
Recharge patterns, possible flow paths and the relative age of groundwater in the Akaki catchment in central Ethiopia have been investigated using stable environmental isotopes δ18O and δ2H and radioactive tritium (3H) coupled with conservative chloride measurements. Stable isotopic signatures are encoded in the groundwater solely from summer rainfall. Thus, groundwater recharge occurs predominantly in the summer months from late June to early September during the major Ethiopian rainy season. Winter recharge is lost through high evaporation–evapotranspiration within the unsaturated zone after relatively long dry periods of high accumulated soil moisture deficits. Chloride mass balance coupled with the isotope results demonstrates the presence of both preferential and piston flow groundwater recharge mechanisms. The stable and radioactive isotope measurements further revealed that groundwater in the Akaki catchment is found to be compartmentalized into zones. Groundwater mixing following the flow paths and topography is complicated by the lithologic complexity. An uncommon, highly depleted stable isotope and zero‐3H groundwater, observed in a nearly east–west stretch through the central sector of the catchment, is coincident with the Filwoha Fault zone. Here, deep circulating meteoric water has lost its isotopic content through exchange reactions with CO2 originating at deeper sources or it has been recharged with precipitation from a different rainfall regime with a depleted isotopic content. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The direct H2Oliquid–H2Ovapour equilibration method utilizing laser spectroscopy (DVE-LS) is a way to measure soil pore water stable isotopes. Various equilibration times and calibration methods have been used in DVE-LS. Yet little is known about their effects on the accuracy of the obtained isotope values. The objective of this study was to evaluate how equilibration time and calibration methods affect the accuracy of DVE-LS. We did both spiking and field soil experiments. For the spiking experiment, we applied DVE-LS to four soils of different textures, each of which was subjected to five water contents and six equilibration times. For the field soil experiment, we applied three calibration methods for DVE-LS to two field soil profiles, and the results were compared with cryogenic vacuum distillation (CVD)-LS. Results showed that DVE-LS demonstrated higher δ2H and δ18O as equilibration time increased, but 12 to 24 hr could be used as optimal equilibration time. For field soil samples, DVE-LS with liquid waters as standards led to significantly higher δ2H and δ18O than CVD-LS, with root mean square error (RMSE) of 8.06‰ for δ2H and 0.98‰ for δ18O. Calibration with soil texture reduced RMSE to 3.53‰ and 0.72‰ for δ2H and δ18O, respectively. Further, calibration with both soil texture and water content decreased RMSE to 3.10‰ for δ2H and 0.73‰ for δ18O. Our findings conclude that the calibration method applied may affect the measured soil water isotope values from DVE-LS.  相似文献   

10.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The stable isotopes of hydrogen and oxygen (δ2H and δ18O) are useful conservative tracers for tracking the movement of water in soil. But although the tracking of water infiltrating through the soil profile and its movement as run‐off and groundwater recharge are well developed, water movement through the soil can also include evaporative fractionation. Soil water fractionation factors have, until now, been largely empirical. Unlike open water evaporation where temperature, humidity, and vapour pressure gradient define fractionation, soil water evaporation includes fractionation by soil matrix effects. These effects are still poorly characterized. Here, we present preliminary results from a simple laboratory experiment with four soil admixtures with grain sizes that range from sand to silt and clay. Our results show that soil tension seems to control the isotope fractionation of resident soil water. The relationship between soil tension and equilibrium fractionation appears to be independent of soil texture and appears well supported by thermodynamic theory. Although these results are preliminary, they suggest that future work should go after soil tension effects as a possible explanatory factor of soil water and water vapour fractionation.  相似文献   

12.
Widespread observations of ecohydrological separation are interpreted by suggesting that water flowing through highly conductive soil pores resists mixing with matrix storage over periods of days to months (i.e., two ‘water worlds’ exist). These interpretations imply that heterogeneous flow can produce ecohydrological separation in soils, yet little mechanistic evidence exists to explain this phenomenon. We quantified the separation between mobile water moving through preferential flow paths versus less mobile water remaining in the soil matrix after free-drainage to identify the amount of preferential flow necessary to maintain a two water world's scenario. Soil columns of varying macropore structure were subjected to simulated rainfall of increasing rainfall intensity (26 mm h−1, 60 mm h−1, and 110 mm h−1) whose stable isotope signatures oscillated around known baseline values. Prior to rainfall, soil matrix water δ2H nearly matched the known value used to initially wet the pore space whereas soil δ18O deviated from this value by up to 3.4‰, suggesting that soils may strongly fractionate 18O. All treatments had up to 100% mixing between rain and matrix water under the lowest (26 mm h−1) and medium (60 mm h−1) rainfall intensities. The highest rainfall intensity (110 mm h−1), however, reduced mixing of rain and matrix water for all treatments and produced significantly different preferential flow estimates between columns with intact soil structure compared to columns with reduced soil structure. Further, artificially limiting exchange between preferential flow paths and matrix water reduced bypass flow under the most intense rainfall. We show that (1) precipitation offset metrics such as lc-excess and d-excess may yield questionable interpretations when used to identify ecohydrological separation, (2) distinct domain separation may require extreme rainfall intensities and (3) domain exchange is an important component of macropore flow.  相似文献   

13.
Traditional aquifer vulnerability techniques primarily rely on spatial property data for a region and are limited by their ability to directly or indirectly assess flow and transport processes occurring from the surface to depth within an aquifer system. The main objective of this study was to investigate groundwater vulnerability in terms of aquifer interconnectivity and flow dynamics. A combination of stable isotopes, groundwater age‐dating (radiocarbon), and geomorphic/geogenic spatial analyses was applied to a regional, highly developed coastal aquifer to explain the presence of nitrate at depth. The average δ13C value (?17.3 ± 2‰ VPDB, n = 27) is characteristic of groundwater originating from locally infiltrated precipitation through extensively cultivated soils. The average δ18O and δD values (?4.0 ± 0.1‰ VSMOW, n = 27; δD: ?19.3 ± 1‰ VSMOW, n = 27, respectively) are similar to precipitation water derived from maritime sources feeding the region's surface water and groundwater. Stable and radioactive isotopes reveal significant mixing between shallow and deep aquifers due to high velocities, hydraulic connection, and input of local recharge water to depths. Groundwater overdevelopment enhances deeper and faster modern water downward flux, amplifying aquifer vulnerability. Therefore, aquifer vulnerability is a variable, dependent on the type and degree of stress conditions experienced by a groundwater system as well as the geospatial properties at the near surface.  相似文献   

14.
Dissolved organic carbon (DOC) originating in peatlands can be mineralized to carbon dioxide (CO2) and methane (CH4), two potent greenhouse gases. Knowledge of the dynamics of DOC export via run‐off is needed for a more robust quantification of C cycling in peatland ecosystems, a prerequisite for realistic predictions of future climate change. We studied dispersion pathways of DOC in a mountain‐top peat bog in the Czech Republic (Central Europe), using a dual isotope approach. Although δ13CDOC values made it possible to link exported DOC with its within‐bog source, δ18OH2O values of precipitation and run‐off helped to understand run‐off generation. Our 2‐year DOC–H2O isotope monitoring was complemented by a laboratory peat incubation study generating an experimental time series of δ13CDOC values. DOC concentrations in run‐off during high‐flow periods were 20–30 mg L?1. The top 2 cm of the peat profile, composed of decaying green moss, contained isotopically lighter C than deeper peat, and this isotopically light C was present in run‐off in high‐flow periods. In contrast, baseflow contained only 2–10 mg DOC L?1, and its more variable C isotope composition intermittently fingerprinted deeper peat. DOC in run‐off occasionally contained isotopically extremely light C whose source in solid peat substrate was not identified. Pre‐event water made up on average 60% of the water run‐off flux, whereas direct precipitation contributed 40%. Run‐off response to precipitation was relatively fast. A highly leached horizon was identified in shallow catotelm. This peat layer was likely affected by a lateral influx of precipitation. Within 36 days of laboratory incubation, isotopically heavy DOC that had been initially released from the peat was replaced by isotopically lighter DOC, whose δ13C values converged to the solid substrate and natural run‐off. We suggest that δ13C systematics can be useful in identification of vertically stratified within‐bog DOC sources for peatland run‐off.  相似文献   

15.
ABSTRACT

The temporal variations in electrical conductivity and the stable isotopes of water, δD and δ18O, were examined at Chhota Shigri Glacier, India, to understand water sources and flow paths to discharge. Discharge is highly influenced by supraglacially derived meltwater during peak ablation, and subglacial meltwaters are more prominent at the end of the melt season. The slope of the best fit linear regression line for δD versus δ18O, for both supraglacial and runoff water, is lower than that for precipitation (snow and rain) and surface ice, indicating strong isotopic fractionation associated with the melting processes. The slope of the local meteoric water line (LMWL) is close to that of the global meteoric water line (GMWL), reflecting that the moisture source is predominantly oceanic. The d-excess variation in rainwater confirms that the southwest monsoon is the main contributor during summer while the remainder including winter is mostly influenced by westerlies.  相似文献   

16.
17.
The Holocene stalagmite FG01 collected at the Fukugaguchi Cave in Itoigawa, central Japan provides a unique high‐resolution record of the East Asian winter monsoon. Because of the climate conditions on the Japan Sea side of the Japanese islands, the volume of precipitation during the winter is strongly reflected in the stalagmite δ18O signal. Examination of the carbon isotopes and the Mg/Ca ratio of FG01 provided additional information on the Holocene climate in Itoigawa, which is characterized by two different modes separated at 6.4 ka. Dripwater composition and the correlation between the δ13C and Mg/Ca data of FG01 indicate the importance of prior calcite precipitation (PCP), a process that selectively eliminated 12C and calcium ions from infiltrating water from CO2 degassing and calcite precipitation. In an earlier period (10.0–6.4 ka), an increase in soil pCO2 associated with warming and wetting climate trends was a critical factor that enhanced PCP, and resulted in an increasing trend in the Mg/Ca and δ13C data and a negative correlation between the δ13C and δ18O profiles. A distinct peak in the δ13C age profile at 6.8 ka could be a response to an increase of approximately 10% in C4 plants in the recharge area. At 6.4 ka, the climate mode changed to another, and correlation between δ18O and δ13C became positive. In addition, a millennial‐scale variation in δ18O and pulsed changes in δ13C and Mg/Ca became distinct. Assuming that δ18O and PCP were controlled by moisture in the later period, the volume of precipitation was high during 6.0–5.2, 4.4–4.0, and 3.0–2.0 ka. In contrast, the driest interval in Itoigawa was during 0.2–0.4 ka, and broadly corresponds to the Little Ice Age.  相似文献   

18.
Deciduous forest covers vast areas of permafrost under severe dry climate in eastern Siberia. Understanding the water cycle in this forest ecosystem is quite important for climate projection. In this study, diurnal variations in isotopic compositions of atmospheric water vapour were observed in eastern Siberia with isotope analyses of precipitation, sap water of larch trees, soil water, and water in surface organic layer during the late summer periods of 2006, 2007, and 2008. In these years, the soil moisture content was considerably high due to unusually large amounts of summer rainfall and winter snowfall. The observed sap water δ18O ranged from ?17.9‰ to ?13.3‰, which was close to that of summer precipitation and soil water in the shallow layer, and represents that of transpired water vapour. On sunny days, as the air temperature and mixing ratio rose from predawn to morning, the atmospheric water vapour δ18O increased by 1‰ to 5‰ and then decreased by about 2‰ from morning to afternoon with the mixing ratio. On cloudy days, by contrast, the afternoon decrease in δ18O and the mixing ratio was not observed. These results show that water vapour that transpired from plants, with higher δ18O than the atmospheric water vapour, contributes to the increase in δ18O in the morning, whereas water vapour in the free atmosphere, with lower δ18O, contributes to the decrease in the afternoon on sunny days. The observed results reveal the significance of transpired water vapour, with relatively high δ18O, in the water cycle on a short diurnal time scale and confirm the importance of the recycling of precipitation through transpiration in continental forest environments such as the eastern Siberian taiga. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We characterize the precipitation and groundwater in a mountainous (peaks slightly above 3000 m a.s.l.), semi‐arid river basin in SE Spain in terms of the isotopes 18O and 2H. This basin, with an extension of about 7000 km2, is an ideal site for such a study because fronts from the Atlantic and the Mediterranean converge here. Much of the land is farmed and irrigated both by groundwater and runoff water collected in reservoirs. A total of approximately 100 water samples from precipitation and 300 from groundwater have been analysed. To sample precipitation we set up a network of 39 stations at different altitudes (800–1700 m a.s.l.), with which we were able to collect the rain and snowfall from 29 separate events between July 2005 and April 2007 and take monthly samples during the periods of maximum recharge of the aquifers. To characterize the groundwater we set up a control network of 43 points (23 springs and 20 wells) to sample every 3 months the main aquifers and both the thermal and non‐thermal groundwater. We also sampled two shallow‐water sites (a reservoir and a river). The isotope composition of the precipitation forms a local meteoric water line (LMWL) characterized by the equation δD = 7·72δ18O + 9·90, with mean values for δ18O and δD of − 10·28‰ and − 69·33‰, respectively, and 12·9‰ for the d‐excess value. To correlate the isotope composition of the rainfall water with groundwater we calculated the weighted local meteoric water line (WLMWL), characterized by the equation δD = 7·40δ18O + 7·24, which takes into account the quantity of water precipitated during each event. These values of (dδD/dδ18O)< 8 and d‐excess (δD–8δ18O)< 10 in each curve bear witness to the ‘amount effect’, an effect which is more manifest between May and September, when the ground temperature is higher. Other effects noted in the basin were those of altitude and the continental influence. The isotopic compositions of the groundwater are represented by the equation δD = 4·79δ18O − 18·64. The groundwater is richer in heavy isotopes than the rainfall, with mean values of − 8·48‰ for δ18O and − 59·27‰ for δD. The isotope enrichment processes detected include a higher rate of evaporation from detrital aquifers than from carbonate ones, the effects of recharging aquifers from irrigation return flow and/or from reservoirs' leakage and enrichment in δ18O from thermal water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Stable isotopic compositions (δ18O and d-excess) from 25 rivers in Thailand were analysed monthly during 2013–2015. Results indicated that monsoon precipitation fundamentally influences the river isotopes. The overland flow supplied from monsoon precipitation and human-altered flow regimes produces considerable isotopic variability. Spatial and temporal variations were observed among four principal geographical regions. The seasonality of monsoon precipitation in mountainous Thailand produced large variations in isotopic compositions because most rainfall occurred during the southwest monsoon, and dry conditions prevailed during the northeast monsoon. The northern and northeastern regions are mountainous, highland areas. Low δ18O values were found in these regions, likely because of altitude effects on precipitation. Conversely, monsoonal precipitation continually supplies rivers in southern Thailand all year round, producing higher and more consistent δ18O values than in the other regions. The Chao Phraya plain in the central region experienced enrichment of δ18O river runoff related to evaporation in irrigation systems. Larger catchment areas and longer residence times resulted in more pronounced evaporation effects, producing lower values of d-excess and local river water line slopes compared with precipitation. The isotopic differences between river waters and precipitation were utilized to determine river recharge elevations and water transit time. The methods presented here can be used to explore hydrological interactions in other tropical river basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号