首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated‐zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume‐averaged approach in which Lagrangian‐based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF‐MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably‐Saturated Two‐Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two‐ and three‐dimensional simulations also were investigated to ensure unsaturated‐saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large‐scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF‐MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three‐dimensional variably saturated flow and transport simulations revealed UZF‐MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide‐spread use of both MODFLOW and MT3DMS, the added capability of unsaturated‐zone transport in this familiar modeling framework stands to benefit a broad user‐ship.  相似文献   

2.
Herrera P  Valocchi A 《Ground water》2006,44(6):803-813
The transport of contaminants in aquifers is usually represented by a convection-dispersion equation. There are several well-known problems of oscillation and artificial dispersion that affect the numerical solution of this equation. For example, several studies have shown that standard treatment of the cross-dispersion terms always leads to a negative concentration. It is also well known that the numerical solution of the convective term is affected by spurious oscillations or substantial numerical dispersion. These difficulties are especially significant for solute transport in nonuniform flow in heterogeneous aquifers. For the case of coupled reactive-transport models, even small negative concentration values can become amplified through nonlinear reaction source/sink terms and thus result in physically erroneous and unstable results. This paper includes a brief discussion about how nonpositive concentrations arise from numerical solution of the convection and cross-dispersion terms. We demonstrate the effectiveness of directional splitting with one-dimensional flux limiters for the convection term. Also, a new numerical scheme for the dispersion term that preserves positivity is presented. The results of the proposed convection scheme and the solution given by the new method to compute dispersion are compared with standard numerical methods as used in MT3DMS.  相似文献   

3.
Owing to the mathematical similarities between heat and mass transport, the multi-species transport model MT3DMS should be able to simulate heat transport if the effects of buoyancy and changes in viscosity are small. Although in several studies solute models have been successfully applied to simulate heat transport, these studies failed to provide any rigorous test of this approach. In the current study, we carefully evaluate simulations of a single borehole ground source heat pump (GSHP) system in three scenarios: a pure conduction situation, an intermediate case, and a convection-dominated case. Two evaluation approaches are employed: first, MT3DMS heat transport results are compared with analytical solutions. Second, simulations by MT3DMS, which is finite difference, are compared with those by the finite element code FEFLOW and the finite difference code SEAWAT. Both FEFLOW and SEAWAT are designed to simulate heat flow. For each comparison, the computed results are examined based on residual errors. MT3DMS and the analytical solutions compare satisfactorily. MT3DMS and SEAWAT results show very good agreement for all cases. MT3DMS and FEFLOW two-dimensional (2D) and three-dimensional (3D) results show good to very good agreement, except that in 3D there is somewhat deteriorated agreement close to the heat source where the difference in numerical methods is thought to influence the solution. The results suggest that MT3DMS can be successfully applied to simulate GSHP systems, and likely other systems with similar temperature ranges and gradients in saturated porous media.  相似文献   

4.
Heejun Suk 《Ground water》2016,54(4):508-520
MT3DMS, a modular three‐dimensional multispecies transport model, has long been a popular model in the groundwater field for simulating solute transport in the saturated zone. However, the method of characteristics (MOC), modified MOC (MMOC), and hybrid MOC (HMOC) included in MT3DMS did not treat Cauchy boundary conditions in a straightforward or rigorous manner, from a mathematical point of view. The MOC, MMOC, and HMOC regard the Cauchy boundary as a source condition. For the source, MOC, MMOC, and HMOC calculate the Lagrangian concentration by setting it equal to the cell concentration at an old time level. However, the above calculation is an approximate method because it does not involve backward tracking in MMOC and HMOC or allow performing forward tracking at the source cell in MOC. To circumvent this problem, a new scheme is proposed that avoids direct calculation of the Lagrangian concentration on the Cauchy boundary. The proposed method combines the numerical formulations of two different schemes, the finite element method (FEM) and the Eulerian–Lagrangian method (ELM), into one global matrix equation. This study demonstrates the limitation of all MT3DMS schemes, including MOC, MMOC, HMOC, and a third‐order total‐variation‐diminishing (TVD) scheme under Cauchy boundary conditions. By contrast, the proposed method always shows good agreement with the exact solution, regardless of the flow conditions. Finally, the successful application of the proposed method sheds light on the possible flexibility and capability of the MT3DMS to deal with the mass transport problems of all flow regimes.  相似文献   

5.
Langevin CD  Guo W 《Ground water》2006,44(3):339-351
This paper presents an approach for coupling MODFLOW and MT3DMS for the simulation of variable-density ground water flow. MODFLOW routines were modified to solve a variable-density form of the ground water flow equation in which the density terms are calculated using an equation of state and the simulated MT3DMS solute concentrations. Changes to the MODFLOW and MT3DMS input files were kept to a minimum, and thus existing data files and data files created with most pre- and postprocessors can be used directly with the SEAWAT code. The approach was tested by simulating the Henry problem and two of the saltpool laboratory experiments (low- and high-density cases). For the Henry problem, the simulated results compared well with the steady-state semianalytic solution and also the transient isochlor movement as simulated by a finite-element model. For the saltpool problem, the simulated breakthrough curves compared better with the laboratory measurements for the low-density case than for the high-density case but showed good agreement with the measured salinity isosurfaces for both cases. Results from the test cases presented here indicate that the MODFLOW/MT3DMS approach provides accurate solutions for problems involving variable-density ground water flow and solute transport.  相似文献   

6.
Backward location and travel time probabilities can be used to characterize known and unknown sources or prior positions of ground water contamination. Backward location probability describes the position of the observed contamination at some time in the past; backward travel time probability describes the amount of time prior to observation that the contamination was released from its source or was at a particular upgradient location. The governing equation for backward probabilities is the adjoint of the governing equation for contaminant transport, but with new load terms. Numerical codes that have been written to solve the forward equations of contaminant transport, e.g., the advection-dispersion equation, can also be used to solve the adjoint equation for location and travel time probabilities; however, the interpretation of the results is different and some new approximations must be made for the load terms. We present the governing equations for backward location and travel time probabilities, and provide appropriate numerical approximations for these load terms using the cell-centered finite difference method, one of the most popular numerical methods in ground water hydrology. We discuss some additional numerical considerations for the backward model including boundary conditions, reversal of the flow field, and interpretation of the results. We illustrate the implementation of the backward probability model using hypothetical examples in one- and two-dimensional domains. We also present a three-dimensional application of a pump-and-treat remediation capture zone delineation at the Massachusetts Military Reservation. The illustrations are performed using MODFLOW-96 for flow simulations and MT3DMS for transport simulations.  相似文献   

7.
8.
波场模拟中的数值频散分析与校正策略   总被引:22,自引:5,他引:17       下载免费PDF全文
波动方程有限差分法正演模拟,对认识地震波传播规律、进行地震属性研究、地震资料地质解释、储层评价等,均具有重要的理论和实际意义.但有限差分法本身固有存在着数值频散问题,数值频散在正演模拟中是一种严重的干扰,会降低波场模拟的精度与分辨率.针对TI介质波场模拟的交错网格有限差分方法,本文从空间网格离散、时间网格离散和算子近似等三个方面对其产生的数值频散进行了分析,并结合其他学者的研究成果给出了TI介质波场模拟中压制数值频散的方法与策略:在已知介质频散关系时,对差分算子可实施算子校正;通过提高差分方程的阶数来提高波场模拟精度;采用流体力学中守恒式方程的通量校正传输方法来压制波场模拟中的数值频散;在实际正演模拟时,采用交错网格高阶有限差分方程,不仅在空间上采用高阶差分,而且在时间上也要采用高阶差分,否则只在单一方向上(空间或时间)提高方程的阶数对压制数值频散也不会取得理想的效果.  相似文献   

9.
Many popular groundwater modeling codes are based on the finite differences or finite volume method for orthogonal grids. In cases of complex subsurface geometries this type of grid either leads to coarse geometric representations or to extremely fine meshes. We use a coordinate transformation method (CTM) to circumvent this shortcoming. In computational fluid dynamics (CFD), this method has been applied successfully to the general Navier–Stokes equation. The method is based on tensor analysis and performs a transformation of a curvilinear into a rectangular unit grid, on which a modified formulation of the differential equations is applied. Therefore, it is not necessary to reformulate the code in total. We applied the CTM to an existing three-dimensional code (SHEMAT), a simulator for heat conduction and advection in porous media. The finite volume discretization scheme for the non-orthogonal, structured, hexahedral grid leads to a 19-point stencil and a correspondingly banded system matrix. The implementation is straightforward and it is possible to use some existing routines without modification. The accuracy of the modified code is demonstrated for single phase flow on a two-dimensional analytical solution for flow and heat transport. Additionally, a simple case of potential flow is shown for a two-dimensional grid which is increasingly deformed. The result reveals that the corresponding error increases only slightly. Finally, a thermal free-convection benchmark is discussed. The result shows, that the solution obtained with the new code is in good agreement with the ones obtained by other codes.  相似文献   

10.
A modified version of the MODFLOW/MT3DMS‐based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably‐saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D‐UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated‐zone flow (UZF1) package. A volume‐averaged approach similar to the method used in UZF‐MT3DMS was adopted. The PHREEQC‐based computation of chemical processes within PHT3D‐UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional‐scale applications, UZF1 simulates downward‐only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably‐saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.  相似文献   

11.
有限差分法广泛应用于地震波场的数值延拓,确定合适的有限差分算子以减小数值频散是有限差分法的一个重要研究内容。近年来为了进一步抑制数值频散和增加时间步长,新的有限差分模板得到了应用,对于此,前人使用泰勒展开方法和最小二乘方法确定有限差分算子系数。本文在以前工作的基础上,使用改进的线性方法确定新模板的有限差分系数,并与传统模板线性方法进行对比;通过频散分析和正演模拟验证出新模板线性方法能够更好地保持频散关系,在相同的精度下效率提高了一倍,从而说明了改进的线性方法的有效性。  相似文献   

12.
In this article we consider the transport of an adsorbing solute in a two-region model of a chemically and mechanically heterogeneous porous medium when the condition of large-scale mechanical equilibrium is valid. Under these circumstances, a one-equation model can be used to predict the large-scale averaged velocity, but a two-equation model may be required to predict the regional velocities that are needed to accurately describe the solute transport process. If the condition of large-scale mass equilibrium is valid, the solute transport process can be represented in terms of a one-equation model and the analysis is simplified greatly. The constraints associated with the condition of large-scale mass equilibrium are developed, and when these constraints are satisfied the mass transport process can be described in terms of the large-scale average velocity, an average adsorption isotherm, and a single large-scale dispersion tensor. When the condition of large-scale mass equilibrium is not valid, two equations are required to describe the mass transfer process, and these two equations contain two adsorption isotherms, two dispersion tensors, and an exchange coefficient. The extension of the analysis to multi-region models is straight forward but tedious.  相似文献   

13.
三角网格有限元法具有网格剖分的灵活性,能有效模拟地震波在复杂介质中的传播.但传统有限元法用于地震波场模拟时计算效率较低,消耗较大计算资源.本文采用改进的核矩阵存储(IKMS)策略以提高有限元法的计算效率,该方法不用组合总体刚度矩阵,且相比于常规有限元法节省成倍的内存.对于时间离散,将有限元离散后的地震波运动方程变换至Hamilton体系,在显式二阶辛Runge-Kutta-Nystr9m(RKN)格式的基础之上加入额外空间离散算子构造修正辛差分格式,通过Taylor展开式得到具有四阶时间精度时间格式,且辛系数全为正数.本文从理论上分析了时空改进方法相比传统辛-有限元方法在频散压制、稳定性提升等方面的优势.数值算例进一步证实本方法具有内存消耗少、稳定性强和数值频散弱等优点.  相似文献   

14.
Discretizing the fracture-matrix interface to simulate solute transport   总被引:1,自引:0,他引:1  
This article examines the required spatial discretization perpendicular to the fracture-matrix interface (FMI) for numerical simulation of solute transport in discretely fractured porous media. The discrete-fracture, finite-element model HydroGeoSphere ( Therrien et al. 2005 ) and a discrete-fracture implementation of MT3DMS ( Zheng 1990 ) were used to model solute transport in a single fracture, and the results were compared to the analytical solution of Tang et al. (1981) . To match analytical results on the relatively short timescales simulated in this study, very fine grid spacing perpendicular to the FMI of the scale of the fracture aperture is necessary if advection and/or dispersion in the fracture is high compared to diffusion in the matrix. The requirement of such extremely fine spatial discretization has not been previously reported in the literature. In cases of high matrix diffusion, matching the analytical results is achieved with larger grid spacing at the FMI. Cases where matrix diffusion is lower can employ a larger grid multiplier moving away from the FMI. The very fine spatial discretization identified in this study for cases of low matrix diffusion may limit the applicability of numerical discrete-fracture models in such cases.  相似文献   

15.
Analytical solutions for the water flow and solute transport equations in the unsaturated zone are presented. We use the Broadbridge and White nonlinear model to solve the Richards’ equation for vertical flow under a constant infiltration rate. Then we extend the water flow solution and develop an exact parametric solution for the advection-dispersion equation. The method of characteristics is adopted to determine the location of a solute front in the unsaturated zone. The dispersion component is incorporated into the final solution using a singular perturbation method. The formulation of the analytical solutions is simple, and a complete solution is generated without resorting to computationally demanding numerical schemes. Indeed, the simple analytical solutions can be used as tools to verify the accuracy of numerical models of water flow and solute transport. Comparison with a finite-element numerical solution indicates that a good match for the predicted water content is achieved when the mesh grid is one-fourth the capillary length scale of the porous medium. However, when numerically solving the solute transport equation at this level of discretization, numerical dispersion and spatial oscillations were significant.  相似文献   

16.
声波方程数值模拟已广泛应用于理论地震计算,同时构成了地震逆时偏移成像技术的基础.对于有限差分法而言,在满足一定的稳定性条件时,普遍存在着因网格化而形成的数值频散效应.如何有效地缓解或压制数值频散是有限差分方法研究的关键所在.为精确求解空间偏导数,相继发展了高阶差分格式优化方法和伪谱方法.近期,为更好地缓解数值频散,提出了时间-空间域有限差分方法,该方法采用了泰勒展开近似方法来确定有限差分格式系数,因而只能保证在一定的小范围内很好的拟合波场传播规律.为进一步压制数值频散效应,本文引入了时间-空间域特定波数点满足频散关系的方法,根据震源、波速和网格间距确定波数范围,同时考虑了多个传播角度,然后建立方程确定了相应的有限差分格式系数,使得差分系数能在更大范围符合波场传播规律.通过频散分析和正演模拟,验证了本文方法的有效性.  相似文献   

17.
Numerical simulation of the acoustic wave equation is widely used to theoretically synthesize seismograms and constitutes the basis of reverse‐time migration. With finite‐difference methods, the discretization of temporal and spatial derivatives in wave equations introduces numerical grid dispersion. To reduce the grid dispersion effect, we propose to satisfy the dispersion relation for a number of uniformly distributed wavenumber points within a wavenumber range with the upper limit determined by the maximum source frequency, the grid spacing and the wave velocity. This new dispersion‐relationship‐preserving method relatively uniformly reduces the numerical dispersion over a large‐frequency range. Dispersion analysis and seismic numerical simulations demonstrate the effectiveness of the proposed method.  相似文献   

18.
In this article, we present a straightforward random walk model for fast evaluation of push‐pull tracer tests. By developing an adaptive algorithm, we overcome the problem of manually defining how many particles have to be used to simulate the transport problem. Beside this, we validate the random walk model by evaluating a push‐pull tracer test with drift phase and confirm the results with MT3DMS. The random walk model took less than 1% of computational time of MT3DMS, thus allowing a remarkable faster evaluation of push‐pull tracer tests.  相似文献   

19.
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.  相似文献   

20.
A benchmark analysis is developed for assessing the reliability of the representation of multiaquifer wells in numerical solute transport simulators. The analysis considers the installation of a well that penetrates two aquifers that are otherwise isolated. The interconnection of the two aquifers by the multiaquifer well leads to the capture of a plume in an upper aquifer and the development of a plume in a lower aquifer. The benchmark analysis couples an exact Laplace transform solution for radially convergent transport with a generalization of an exact Laplace transform solution for radially divergent transport. The benchmark analysis is used to test the multiaquifer well simulation capability incorporated recently in MT3DMS. The results of the analysis provide insights into important issues of model accuracy and efficiency. The results of the analysis also highlight the potential implications of installing wells with relatively long screens at sites with contaminated groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号