首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In northern regions, transportation infrastructure can experience severe structural damages due to permafrost degradation. Water infiltration and subsurface water flow under an embankment affect the energy balance of roadways and underlying permafrost. However, the quantification of the processes controlling these changes and a detailed investigation of their thermal impacts remain largely unknown due to a lack of available long-term embankment temperature data in permafrost regions. Here, we report observations of heat advection linked to surface water infiltration and subsurface flow based on a 9-year (from 2009 to 2017) thermal monitoring at an experimental road test site built on ice-rich permafrost conditions in southwestern Yukon, Canada. Our results show that snowmelt water infiltration in the spring rapidly increases temperature in the upper portion of the embankment. The earlier disappearance of snow deposited at the embankment slope increases the thawing period and the temperature gradient in the embankment compared with the natural ground. Infiltrated summer rainfall water lowered the near-surface temperatures and subsequently warmed embankment fill materials down to 3.6-m depth. Heat advection caused by the flow of subsurface water produced warming rates at depth in the embankment subgrade up to two orders of magnitude faster than by atmospheric warming (heat conduction). Subsurface water flow promoted permafrost thawing under the road embankment and led to an increase in active layer thickness. We conclude that the thermal stability of roadways along the Alaska Highway corridor is not maintainable in situations where water is flowing under the infrastructure unless mitigation techniques are used. Severe structural damages to the highway embankment are expected to occur in the next decade.  相似文献   

2.
Tide-induced airflow is commonly seen in coastal lands and affects ground stability especially with a less permeable pavement on the ground surface. A tide-induced airflow model in a two-layered unsaturated zone consisting of a highly permeable layer underneath a less permeable layer was established by Li and Jiao [Li HL, JJ Jiao. One-dimensional airflow in unsaturated zone induced by periodic water table fluctuation. Water Resour Res 2005;41:W04007. doi:10.1029/2004WR003916] to describe the one-dimensional airflow with constant atmospheric pressure at the ground surface. In this study, we expand the Li and Jiao model by considering the realistic atmospheric pressure fluctuations and the initial condition. A new transient solution to the airflow model is developed for an initial boundary value problem (IBVP). The transient solution can be used not only to calculate the subsurface air pressure at a future time with a known initial condition, but also to evaluate the asymptotic air pressure variations when time becomes long. The amplitude ratio and phase lag of the subsurface air pressure relative to the tide-induced hydraulic head variations inside the unconfined aquifer below the unsaturated zone are investigated. The results reveal that effect on the subsurface pressure due to changes of atmospheric pressure amplitude depends on the configurations of air resistance in the less permeable layer and the air-filled porosity difference in the two layers. The introduction of atmospheric pressure fluctuations into the airflow model leads to insignificant influence on water table level. A field application of the new solution at Hong Kong International Airport in Hong Kong, China is demonstrated. It indicates that the new transient solution can be conveniently used to evaluate the subsurface air pressure with discrete atmospheric pressure data at the ground surface.  相似文献   

3.
Transient recharge to the water table is often not well understood or quantified. Two approaches for simulating transient recharge in a ground water flow model were investigated using the Trout Lake watershed in north-central Wisconsin: (1) a traditional approach of adding recharge directly to the water table and (2) routing the same volume of water through an unsaturated zone column to the water table. Areas with thin (less than 1 m) unsaturated zones showed little difference in timing of recharge between the two approaches; when water was routed through the unsaturated zone, however, less recharge was delivered to the water table and more discharge occurred to the surface because recharge direction and magnitude changed when the water table rose to the land surface. Areas with a thick (15 to 26 m) unsaturated zone were characterized by multimonth lags between infiltration and recharge, and, in some cases, wetting fronts from precipitation events during the fall overtook and mixed with infiltration from the previous spring snowmelt. Thus, in thicker unsaturated zones, the volume of water infiltrated was properly simulated using the traditional approach, but the timing was different from simulations that included unsaturated zone flow. Routing of rejected recharge and ground water discharge at land surface to surface water features also provided a better simulation of the observed flow regime in a stream at the basin outlet. These results demonstrate that consideration of flow through the unsaturated zone may be important when simulating transient ground water flow in humid climates with shallow water tables.  相似文献   

4.
In most practical situations, the upper part of a geological section consists of loose sediments, in which heat transfer cannot be described as a purely conductive process. To investigate such situations a one-dimensional numerical model of terrestrial temperature field formation under the combined influence of vertical groundwater filtration and ground surface temperature changes has been developed. The model allows one to consider the perturbation of heat flow interval values resulting from short- and long-period temperature waves propagating into permeable rocks under conditions of advective heat transfer, caused by vertical groundwater filtration. The results show that temperature profiles and interval heat flow values are sensitive to both the paleoclimatic history and the rate of groundwater filtration. The latter plays the prevailing role in the variations of geothermal field parameters, especially within the uppermost part of the loose sediments in unconfined aquifers. The problem was solved for a permeable layer, underlaid by an impermeable layer. This schematisation of water exchange is the typically accepted for hydrogeological analysis. Even at very low rates of filtration the intensity of this effect is enhanced substantially for long-period variations. In the extreme case (for periods of temperature variations of the order of 100,000 years) at typical rates of filtration within the permeable layer, an almost gradient-free zone can be formed down to depths of a few hundred metres. For the case of upward filtration, on the contrary, the influence of climatic variations on the terrestrial temperature field becomes substantially attenuated.  相似文献   

5.
Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite‐derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modelling. We observed gradients in water surface elevation between neighbouring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to ‘fill‐and‐spill’ over topographic depressions (surface sills), as we observed for the Twelvemile‐Buddy Lake pair following a May 2013 ice‐jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill‐and‐spill) to shallow groundwater flow (‘fill‐and‐seep’). Such a shift is possible in the next several hundred years of ground surface warming and may bring about more synchronous water level changes between neighbouring lakes following large flood events. This relationship offers a potentially useful tool, well suited to remote sensing, for identifying long‐term changes in shallow groundwater flow resulting from thawing of permafrost. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This study presents an extension of the concept of “quasi-saturation” to a quasi-saturated layer, defined as the uppermost dynamic portion of the saturated zone subject to water table fluctuations. Entrapped air here may cause substantial reductions in the hydraulic conductivity (K) and fillable pore water. Air entrapment is caused by a rising water table, usually as a result of groundwater recharge. The most significant effects of entrapped air are recharge overestimation based on methods that use specific yield (Sy), such as the water table fluctuation method (WTF), and reductions in K values. These effects impact estimation of fluid flow velocities and contaminant migration rates in groundwater. In order to quantify actual groundwater recharge rates and the effects of entrapped air, numerical simulations with the FEFLOW (Version 7.0) groundwater flow model were carried out using a quasi-saturated layer for a pilot area in Rio Claro, Brazil. The calculated recharge rate represented 16% of the average precipitation over an 8-year period, approximately half of estimates using the WTF method. Air entrapment amounted to a fillable porosity of 0.07, significant lower that the value of 0.17 obtained experimentally for Sy. Numerical results showed that the entrapped air volume in the quasi-saturated layer can be very significant (0.58 of the air fraction) and hence can significantly affect estimates of groundwater recharge and groundwater flow rates near the water table.  相似文献   

7.
As a result of global warming induced permafrost degradation in recent decades, thermokarst lakes in the Qinghai–Tibet plateau (QTP) have been regulating local hydrological and ecological processes. Simulations with coupled moisture–heat numerical models in the Beiluhe basin (located in the hinterland of permafrost regions on the QTP) have provided insights into the interaction between groundwater flow and the freeze–thaw process. A total of 30 modified SUTRA scenarios were established to examine the effects of hydrodynamic forces, permeability, and climate on thermokarst lakes. The results indicate that the hydrodynamic condition variables regulate the permafrost degradation around the lakes. In case groundwater recharges to the lake, a low–temperature groundwater flow stimulates the expansion of the surrounding thawing regions through thermal convection. The thawing rate of the permafrost underlying the lake intensifies when groundwater is discharged from the lake. Under different permeability conditions, spatiotemporal variations in the active layer thickness significantly influence the occurrence of an open talik at the lake bottom. A warmer and wetter climate will inevitably lead to a sharp decrease in the upper limit of the surrounding permafrost, with a continual decrease in the duration of open talik events. Overall, our results underscore that comprehensive consideration of the relevant hydrologic processes is critical for improving the understanding of environmental and ecological changes in cold environments.  相似文献   

8.
In environments with shallow ground water elevation, small changes in the water table can cause significant variations in recharge and evapotranspiration fluxes. Particularly, where ground water is close to the soil surface, both recharge and evapotranspiration are regulated by a thin unsaturated zone and, for accuracy, must be represented using nonconstant and often nonlinear relationships. The most commonly used ground water flow model today, MODFLOW, was originally designed with a modular structure with independent packages representing recharge and evaporation processes. Systems with shallow ground water, however, may be better represented using either a recharge function that varies with ground water depth or a continuous recharge and evapotranspiration function that is dependent on depth to water table. In situations where the boundaries between recharging and nonrecharging cells change with time, such as near a seepage zone, a continuous ground water flux relationship allows recharge rates to change with depth rather than having to calculate them at each stress period. This research article describes the modification of the MODFLOW 2000 recharge and segmented evapotranspiration packages into a continuous recharge-discharge function that allows ground water flux to be represented as a continuous process, dependent on head. The modifications were then used to model long-term recharge and evapotranspiration processes on a saline, semiarid floodplain in order to understand spatial patterns of salinization, and an overview of this process is given.  相似文献   

9.
Shallow groundwater is an important source of water for the maintenance and restoration of ecosystems in arid environments, which necessitates a deeper understanding of its complex spatial and temporal dynamics driven by hydrological processes. This study explores the dominant hydrological processes that control the shallow groundwater dynamics in the Gobi Desert‐riparian‐oasis system of the lower Heihe River, a typical arid inland river basin located in northwestern China. The groundwater level and temperature were monitored in 14 shallow wells at 30‐min intervals during the 2010–2012 period. After combining this information with meteorological and hydrological data, a comprehensive analysis was conducted to understand the dynamic behaviour of the shallow groundwater system and to determine the dominant factors that control the groundwater flow processes. The results of the study indicate notably large temporal and spatial variations in both the groundwater level and temperature. Noticeable fluctuations in the groundwater level (0.5–1 m) and temperature (4–8 °C) were observed in the riparian zone, evidencing a clear river influence. In comparison, the groundwater fluctuations in the Gobi Desert were more stable (the annual variations of the water table were less than 0.5 m, and the water temperature varied by no more than 2 °C). Strong variations in the groundwater table (1.5–5.0 m/year) and temperature (1.5–6.5 °C), mainly caused by surface flood irrigation and groundwater pumping, were observed in the oasis area. The investigated sites were categorized into three types that reflect the dominant hydrological processes: (1) the riparian zone, dominated by riverbank filtration and groundwater evapotranspiration; (2) the Gobi Desert area, controlled by groundwater evaporation and lateral recharge; and (3) the oasis area, dominated by groundwater evapotranspiration as well as surface–groundwater interactions caused by human activities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The “HYDRUS package for MODFLOW” is an existing MODFLOW package that allows MODFLOW to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package is based on incorporating parts of the HYDRUS-1D model (to simulate unsaturated water flow in the vadose zone) into MODFLOW (to simulate saturated groundwater flow). The coupled model is effective in addressing spatially variable saturated-unsaturated hydrological processes at the regional scale. However, one of the major limitations of this coupled model is that it does not have the capability to simulate solute transport along with water flow and therefore, the model cannot be employed for evaluating groundwater contamination. In this work, a modified unsaturated flow and transport package (modified HYDRUS package for MODFLOW and MT3DMS) has been developed and linked to the three-dimensional (3D) groundwater flow model MODFLOW and the 3D groundwater solute transport model MT3DMS. The new package can simulate, in addition to water flow in the vadose zone, also solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption. Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the modified HYDRUS package. The performance of the newly developed model is evaluated using HYDRUS (2D/3D), and the results indicate that the new model is effective in simulating the movement of water and contaminants in the saturated-unsaturated flow domains.  相似文献   

11.
Groundwater surface water interaction in the hyporheic zone remains an important challenge for water resources management and ecosystem restoration. In heterogeneous stratified glacial sediments, reach‐scale environments contain an uneven distribution of focused groundwater flow occurring simultaneously with diffusely discharging groundwater. This results in a variation of stream‐aquifer interactions, where focused flow systems are able to temporally dominate exchange processes. The research presented here investigates the direct and indirect influences focused groundwater discharge exerts on the hyporheic zone during baseflow recession. Field results demonstrate that as diffuse sources of groundwater deplete during baseflow recession, focused groundwater discharge remains constant. During baseflow recession the hyporheic zone is unable to expand, while the high nitrate concentration from focused discharge changes the chemistry of the stream. The final result is a higher concentration of nitrate in the hyporheic zone as this altered surface water infiltrates into the subsurface. This indirect coupling of focused groundwater discharge and the hyporheic zone is unaccounted for in hyporheic studies at this time. Results indicate important implications for the potential reduction of agricultural degradation of water quality.  相似文献   

12.
Intensive seismic exploration in the Northwest Territories began in the late 1960s. Since that time, the legacy of seismic surveys – i.e. straight lines cutting through boreal forest and tundra – has remained visible throughout northern Canada and Alaska. The removal of trees and compaction of the ground surface alter the thermophysical properties of the active (i.e. seasonally thawed) layer to such an extent that the underlying permafrost seriously degrades or even disappears completely. Such a transformation along linear corridors that cut indiscriminately across different terrain types with contrasting hydrological functions has potentially serious implications to the redistribution of water and energy within and among landscape units with feedbacks to permafrost thaw, land cover change and run‐off generation. This paper characterizes the flow and storage of water and energy along a seismic cut line in the high boreal zone of discontinuous permafrost in order to improve the understanding of these processes, their interactions and hydrological implications. As such, this paper lays a conceptual foundation for the development of numerical models needed to predict the hydrological and thermal impact of seismic lines in this sensitive region. We used ground‐penetrating radar and multi‐year ground temperatures and water levels along a seismic line to estimate the degree of permafrost degradation below it. The seismic line studied extends from a permafrost‐free wetland (flat bog), over a permafrost body (peat plateau) and into another permafrost‐free wetland (channel fen). It was found that once thaw had lowered the permafrost table below the ground surface elevation of the flat bog and channel fen, the seismic line forms a hydrological connection between them. It was also shown that during the permafrost thaw process, seismic lines develop a perennially thawed layer (talik) between the overlying active layer and underlying permafrost and that the talik conveys water as a conduit throughout the year. The implications of such drainage through seismic lines and networks on basin drainage in peatland‐dominated regions with discontinuous permafrost are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Results from hydrometric and isotopic investigations of unsaturated flow during snowmelt are presented for a hillslope underlain by well-sorted sands. Passage of melt and rainwater through the vadose zone was detected from temporal changes in soil water 2H concentrations obtained from sequential soil cores. Bypassing flow was indicated during the initial snowmelt phase, but was confined to the near-surface zone. Recharge below this zone was via translatory flow, as meltwater inputs displaced premelt soil water. Estimates of premelt water fluxes indicate that up to 19 per cent of the premelt soil water may have been immobile. Average water particle velocities during snowmelt ranged from 6.2 × 10?7 to 1.1 × 10?6 ms?1, suggesting that direct groundwater recharge by meltwater during snowmelt was confined to areas where the premelt water table was within 1 m of the ground surface. Soil water 2H signatures showed a rapid response to isotopically-heavy rain-on-snow inputs late in the melt. In addition, spatial variations in soil moisture content at a given depth induced a pronounced lateral component to the predominantly vertical transport of water. Both factors may complicate isotopic profiles in the vadose zone, and should be considered when employing environmental isotopes to infer recharge processes during snowmelt.  相似文献   

14.
Dekui Yuan  Binliang Lin 《水文研究》2009,23(19):2804-2817
Beach water table fluctuations have an impact on the transport of beach sediments and the exchange of solute and mass between coastal aquifer and nearby water bodies. Details are given of the refinement of a dynamically integrated ground‐ and surface‐water model, and its application to study ground‐ and surface‐water interactions in coastal regions. The depth‐integrated shallow‐water equations are used to represent the surface‐water flow, and the extended Darcy's equation is used to represent the groundwater flow, with a hydrostatic pressure distribution being assumed to apply for both these two types of flows. At the intertidal region, the model has two layers, with the surface‐water layer being located on the top of the groundwater layer. The governing equations for these two types of flows are discretized in a similar manner and they are combined to give one set of linear algebraic equations that can be solved efficiently. The model is used to predict water level distributions across sloping beaches, where the water table in the aquifer may or may not decouple from the free water surface. Five cases are used to test the model for simulating beach water table fluctuations induced by tides, with the model predictions being compared with existing analytical solutions and laboratory and field data published in the literature. The numerical model results show that the integrated model is capable of simulating the combined ground‐ and surface‐water flows in coastal areas. Detailed analysis is undertaken to investigate the capability of the model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Vegetated, shallow groundwater environments typically have high environmental and economic value. A sound understanding of the complex interactions and feedbacks between surface vegetation and groundwater resources is crucial to managing and maintaining healthy ecosystems while responding to human needs. A vegetated shallow groundwater environment was modelled using the software HYDRUS 2D to investigate the effects of several combinations of soil type and root distributions on shallow groundwater resources. Three rainfall regimes coupled to both natural and anthropogenically affected groundwater conditions were used to investigate the effect that combinations of four soil types and five root distributions can have on (a) groundwater level drops, (b) groundwater depletion, (c) groundwater recharge and (d) water stress conditions. Vegetation with roots distributed across the whole unsaturated zone and vegetation with dimorphic root systems (i.e. roots having larger concentrations both near the surface and the capillary fringe) behaved differently from vegetation growing roots mainly near the saturated zone. Specifically, vegetation with roots in the unsaturated zone caused water‐table drops and groundwater depletions that were half the amount due to deep‐rooted vegetation. Vegetation with a large portion of roots near the soil surface benefited from rainfall and was less vulnerable to water‐table lowering; as such, the fraction of the total area of roots affected by water stress conditions could be 40% smaller than in the case with deep‐rooted vegetation. However, roots uniformly distributed in the unsaturated zone could halve groundwater recharge rates observed in bare soils. Our analysis provided insights that can enable the formulation of site‐ and purpose‐specific management plans to respond to both human and ecosystem water requirements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Permafrost on the Qinghai-Tibet Plateau (QTP) is widespread, thin, and thermally unstable. Under a warming climate during the past few decades, it has been degrading extensively with generally rising ground temperatures, the deepening of the maximum summer thaw, and with lessening of the winter frost penetration. The permafrost has degraded downward, upward and laterally. Permafrost has thinned or, in some areas, has totally disappeared. The modes of permafrost degradation have great significance in geocryology, in cold regions engineering and in cold regions environmental management. Permafrost in the interior of the QTP is well represented along the Qing-hai-Tibet Highway (QTH), which crosses the Plateau through north to south and traverses 560 km of permafrost-impacted ground. Horizontally, the degradation of permafrost occurs more visibly in the sporadic permafrost zone in the vicinity of the lower limit of permafrost (LLP), along the margins of taliks, and around permafrost islands. Downward degradation develops when the maximum depth of seasonal thaw exceeds the maximum depth of seasonal frost, and it generally results in the formation of a layered talik disconnecting the permafrost from the seasonal frost layer. The downward degrada- tion is divided into four stages: 1) initial degradation, 2) accelerated degradation, 3) layered talik and 4) finally the conversion of permafrost to seasonally frozen ground (SFG). The upward degradation occurs when the geothermal gradient in permafrost drops to less than the geothermal gradients in the underlying thawed soil layers. Three types of permafrost temperature curves (stable, degrading, and phase-changing transitory permafrost) illustrate these modes. Although strong differentiations in local conditions and permafrost types exist, the various combinations of the three degradation modes will ultimately transform permafrost into SFG. Along the QTH, the downward degradation has been proceeding at annual rates of 6 to 25 cm, upward degradation at 12 to 30 cm, and lateral degradation in the sporadic permafrost zone at 62 to 94 cm during the last quarter century. These rates exceed the 4 cm per year for the past 20 years reported for the discontinuous permafrost zone in subarctic Alaska, the 3 to 7 cm per year reported in Mongolia, and that of the thaw-stable permafrost in subarctic Yakutia and Arctic Alaska.  相似文献   

17.
The topography and geomorphology of the sand dunes and interdunal valleys in the Nebraska Sand Hills play important roles in regional water cycle by influencing groundwater recharge and evapotranspiration (ET). In this study, groundwater recharge, associated with precipitation and ET as well as soil hydraulics, and its spatial variations owing to the topography of dunes and valleys are examined. A method is developed to describe the recharge as a function of the storage capacity of dunes of various heights. After the method is tested using observations from a network of wells in the Sand Hills, it is used in the MODFLOW model to simulate and describe recharge effects on groundwater table depth at two different dune-valley sites. Analysis of modeled groundwater budget shows that the groundwater table depth in the interdunal valleys is critically influenced by vertical groundwater flows from surrounding dunes. At the site of higher dunes there are steadier and larger vertical groundwater flows in the dunes from their previous storage of precipitation. These vertical flows change to be horizontal converging groundwater flows and create upwelling in the interdunal valleys, where larger ET loss at the surface further enhances groundwater upwelling. Such interdunal valley is the major concentration area of the surface water and groundwater flow in the Sand Hills. At the site of shallow dunes and a broad interdunal valley the supply of groundwater from the dunes is trivial and inadequate to support upwelling of groundwater in the valley. The groundwater flows downward in the valley, and the valley surface is dry. Weak ET loss at the surface has a smaller effect on the groundwater storage than the precipitation recharge, making such area a source for groundwater.  相似文献   

18.
Numerical solutions of the equations of fluid flow and heat transport are used to quantify the effects of groundwater flow on the subsurface thermal regime. Emphasis is placed on investigating the influence of water table geometry on the nature of the thermal disturbance to surface heat flow. Three different water table configurations are compared; with convex, linear, and concave geometries. Results indicate that knowledge of only the overall change in elevation of the water table between the highland and valley bottom is inadequate to determine the degree and character of the hydrologic disturbance in surface heat flow. The configuration of the water table exerts an important control on surface heat flow in advectively-disturbed cases.  相似文献   

19.
Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence on subsequent simulations. A key challenge in model initialization is that it requires spatially distributed information on model states, groundwater levels and soil moisture, even when such data are not routinely available. Here, the impact of uncertainty in initial condition was explored across a 208 km2 catchment in Denmark using the ParFlow.CLM model. The initialization impact was assessed under two meteorological conditions (wet vs dry) using five depth to water table and soil moisture distributions obtained from various equilibrium states (thermal, root zone, discharge, saturated and unsaturated zone equilibrium) during the model spin‐up. Each of these equilibrium states correspond to varying computation times to achieve stability in a particular aspect of the system state. Results identified particular sensitivity in modelled recharge and stream flow to the different initializations, but reduced sensitivity in modelled energy fluxes. Analysis also suggests that to simulate a year that is wetter than the spin‐up period, an initialization based on discharge equilibrium is adequate to capture the direction and magnitude of surface water–groundwater exchanges. For a drier or hydrologically similar year to the spin‐up period, an initialization based on groundwater equilibrium is required. Variability of monthly subsurface storage changes and discharge bias at the scale of a hydrological event show that the initialization impacts do not diminish as the simulations progress, highlighting the importance of robust and accurate initialization in capturing surface water–groundwater dynamics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can simulate spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-h period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land-surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号