首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The water‐level decline of the High Plains/Ogallala aquifer is one of the largest water management concerns in the United States. The economy and livelihood of people living in that vast region depend almost exclusively on water extracted from that aquifer. A debate about its future is ongoing, and questions remain as to how best to conserve the groundwater resource. Maintaining the aquifer will require reductions in pumping and irrigated hectarage and adopting additional conservation measures. Eventually, the agricultural system will have to be based dominantly on the renewable water resources of the region. In effect, this means a limited‐irrigation and/or dry‐farming regime. What Kansas is currently doing to further extend the life of the aquifer is presented here together with additional measures that could be taken. A key management approach to help sustain the aquifer in western Kansas is to divide the aquifer into subunits on which to base localized management decisions. Another recently adopted measure is the establishment of local enhanced management areas, which would allow locally agreed upon specific corrective controls in those areas. History has shown that incentive and voluntary plans alone have not been successful in halting water‐level declines. Thus, limits and timelines need to be set and checks must be in place to enforce strict administration of conservation measures. It is advocated that water laws be reformed and modernized so that “water rights” are constrained by the current availability of water and the preservation of the resource base for future generations.  相似文献   

2.
Gyoo‐Bum Kim 《水文研究》2010,24(24):3535-3546
A number of groundwater wells for agricultural activity, including rice farming and greenhouses, have been developed near streams over the past 20 years in South Korea. The result of a stream depletion calculation using an analytical solution of complimentary error function shows that groundwater pumping at 1949 wells drilled in the Gapcheon watershed can produce stream depletion. This amount is estimated at about 7% of annual baseflow and reaches as high as 18% of monthly baseflow during the maximum agricultural water consumption period in May. Agricultural wells have a larger effect on stream depletion than domestic wells because of their higher pumping rate. Stream depletion from agricultural wells located within 200 m from a stream represents 65% of the total depletion rate. Agricultural water policy for water use at nearby streams should be changed to reduce stream depletion and thereby maintain sustainable water development in South Korea. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Streamflow response in Boreal Plains catchments depends on hydrological connectivity between forested uplands, lakes, and peatlands, and their hydrogeomorphic setting. Expected future drying of the Boreal Plains ecozone is expected to reduce hydrological connectivity of landscape units. To better understand run‐off generation during dry periods, we determined whether peatland and groundwater connectivity can dampen expected future water deficits in forests and lakes. We studied Pine Fen Creek catchment in the Boreal Plains ecozone of central Saskatchewan, Canada, which has a large, valley‐bottom, terminally positioned peatland, two lakes, and forested uplands. A shorter intensive study permitted a more detailed partitioning of water inputs and outputs within the catchment during the low flow period, and an assessment of a 10‐year data set provided insight into the function of the peatland over a range of climate conditions. Using a water balance approach, we learned that two key processes regulate flow of Pine Fen Creek. The cumulative impact of landscape unit hydrological connectivity and the peatland's hydrological functional state were needed to understand catchment response. There was evidence of a run‐off threshold which, when crossed, changed the peatland's hydrological function from transmission to run‐off generation. Results also suggest the peatland should behave more often as a transmitter of groundwater than as a generator of run‐off under a drier climate future, owing to a reduced water supply.  相似文献   

4.
Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 km3/year during 1998–2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 km3/year during 1998–2002. It is the sum of the net abstraction of 250 km3/year of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/year of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.  相似文献   

5.
Groundwater supplies a significant proportion of water use in the United States and is critical to the maintenance of healthy ecosystems and environmental processes, thus characterizing aquifer hydrology is important to managing and preserving these resources. While groundwater isotopes provide insight into hydrologic and ecologic processes, their application is limited to where measurements exist. To help overcome this limitation, we used the random forest algorithm to develop a predictive model for shallow groundwater isotopes in the conterminous United States. Our model uses environmental variables (e.g. temperature, elevation, precipitation isotopes) as predictors. We used our model to develop the first shallow groundwater isoscape of δ2H and δ18O for the conterminous United States. We describe the patterns in groundwater isotopes using both observations and our modelled isoscape. We find that throughout much of the Eastern United States, groundwater isotopes are close to annual amount weighted precipitation, while groundwater isotopes are significantly depleted relative precipitation across much of the High Plains and Western United States. Furthermore, we compare the observations compiled for this study to isotopes of precipitation, which allows us to determine the relative recharge efficiency (i.e. ratio of groundwater recharge to precipitation) between seasons and the proportion of annual recharge that occurs in a given season. Our findings suggest that winter recharge is generally more efficient than summer recharge; however, the dominant recharge season is more varied as it is the product of both seasonal recharge efficiency and the seasonal timing of precipitation. Parts of the central United States have summer dominant recharge, which is likely the result of heavy summer precipitation/nocturnal summer precipitation. Interestingly, parts of coastal California appear to have summer dominant recharge, which we suggest could be due to recharge from fog-drip. Our results summarize spatial patterns in groundwater isotopes across the conterminous United States, provide insight into the hydrologic processes affecting shallow groundwater, and are valuable information for future ecologic and hydrologic studies.  相似文献   

6.
The volume of groundwater stored in the subsurface in the United States decreased by almost 1000 km3 during 1900–2008. The aquifer systems with the three largest volumes of storage depletion include the High Plains aquifer, the Mississippi Embayment section of the Gulf Coastal Plain aquifer system, and the Central Valley of California. Depletion rates accelerated during 1945–1960, averaging 13.6 km3/year during the last half of the century, and after 2000 increased again to about 24 km3/year. Depletion intensity is a new parameter, introduced here, to provide a more consistent basis for comparing storage depletion problems among various aquifers by factoring in time and areal extent of the aquifer. During 2001–2008, the Central Valley of California had the largest depletion intensity. Groundwater depletion in the United States can explain 1.4% of observed sea‐level rise during the 108‐year study period and 2.1% during 2001–2008. Groundwater depletion must be confronted on local and regional scales to help reduce demand (primarily in irrigated agriculture) and/or increase supply.  相似文献   

7.
Water level changes in wells provide a direct measure of the impact of groundwater development at a scale of relevance for management activities. Important information about aquifer dynamics and an aquifer's future is thus often embedded in hydrographs from continuously monitored wells. Interpretation of those hydrographs using methods developed for pumping‐test analyses can provide insights that are difficult to obtain via other means. These insights are demonstrated at two sites in the High Plains aquifer in western Kansas. One site has thin unconfined and confined intervals separated by a thick aquitard. Pumping‐induced responses in the unconfined interval indicate a closed (surrounded by units of relatively low permeability) system that is vulnerable to rapid depletion with continued development. Responses in the confined interval indicate that withdrawals are largely supported by leakage. Given the potential for rapid depletion of the unconfined interval, the probable source of that leakage, it is likely that large‐scale irrigation withdrawals will not be sustainable in the confined interval beyond a decade. A second site has a relatively thick unconfined aquifer with responses that again indicate a closed system. However, unlike the first site, previously unrecognized vertical inflow can be discerned in data from the recovery periods. In years of relatively low withdrawals, this inflow can produce year‐on‐year increases in water levels, an unexpected occurrence in western Kansas. The prevalence of bounded‐aquifer responses at both sites has important ramifications for modeling studies; transmissivity values from pumping tests, for example, must be used cautiously in regional models of such systems.  相似文献   

8.
Marine fish farming is increasing rapidly in the Mediterranean and in contrast to the Atlantic the coastal zone in the Mediterranean is characterized by clear waters with high transparency. This allows benthic primary producers such as the slow-growing seagrass Posidonia oceanica to grow at large depths at locations suitable for fish farming and generating a conflict between the conservation of these meadows and the growth of aquaculture operations in the Mediterranean. In this paper we review the current knowledge on environmental interactions between fish farming and benthic primary producers with particular focus on P. oceanica, as this seagrass is a key component along Mediterranean coasts. The recovery times of P. oceanica are very long, in the order of centuries, and losses of this species are thus considered to be irreversible at managerial time scales.  相似文献   

9.
The sustainability of crucial earth resources, such as groundwater, is a critical issue. We consider groundwater sustainability a value-driven process of intra- and intergenerational equity that balances the environment, society, and economy. Synthesizing hydrogeological science and current sustainability concepts, we emphasize three sustainability approaches: setting multigenerational sustainability goals, backcasting, and managing adaptively. As most aquifer problems are long-term problems, we propose that multigenerational goals (50 to 100 years) for water quantity and quality that acknowledge the connections between groundwater, surface water, and ecosystems be set for many aquifers. The goals should be set by a watershed- or aquifer-based community in an inclusive and participatory manner. Policies for shorter time horizons should be developed by backcasting, and measures implemented through adaptive management to achieve the long-term goals. Two case histories illustrate the importance and complexity of a multigenerational perspective and adaptive management. These approaches could transform aquifer depletion and contamination to more sustainable groundwater use, providing groundwater for current and future generations while protecting ecological integrity and resilience.  相似文献   

10.
Aquifers supporting irrigated agriculture are a resource of global importance. Many of these systems, however, are experiencing significant pumping-induced stress that threatens their continued viability as a water source for irrigation. Reductions in pumping are often the only option to extend the lifespans of these aquifers and the agricultural production they support. The impact of reductions depends on a quantity known as “net inflow” or “capture.” We use data from a network of wells in the western Kansas portions of the High Plains aquifer in the central United States to demonstrate the importance of net inflow, how it can be estimated in the field, how it might vary in response to pumping reductions, and why use of “net inflow” may be preferred over “capture” in certain contexts. Net inflow has remained approximately constant over much of western Kansas for at least the last 15 to 25 years, thereby allowing it to serve as a target for sustainability efforts. The percent pumping reduction required to reach net inflow (i.e., stabilize water levels for the near term [years to a few decades]) can vary greatly over this region, which has important implications for groundwater management. However, the reduction does appear practically achievable (less than 30%) in many areas. The field-determined net inflow can play an important role in calibration of regional groundwater models; failure to reproduce its magnitude and temporal variations should prompt further calibration. Although net inflow is a universally applicable concept, the reliability of field estimates is greatest in seasonally pumped aquifers.  相似文献   

11.
Understanding the key drivers behind intensive use of groundwater resources and subsequent depletion in northern India is important for future food security of India. Although spatio-temporal changes of groundwater storage (GWS) and its depletion in northern India are mapped using the NASA's GRACE (Gravity Recovery and Climate Experiment) records, the sub-regional diverse socio-political and environmental factors contributing to the variability in groundwater withdrawals and renewals are not well documented. Here, we provide new evidence on changes in GWS at different spatial scales using both observations and satellite-based measurements applying both parametric and non-parametric statistical analyses. The substantial loss of GWS has occurred since the beginning of the 21st century, and the decline in GWS is associated with some record-breaking dry and hot climate events. We present how certain state-based policy decisions, such as supplying free electricity for irrigation, prompted farmers to extract groundwater unsustainably and thus led to widespread GWS deletion, which has been also accelerated by frequent dryness and rising temperatures. In the hotspot of Punjab, Haryana and Delhi of northern India, the extracted groundwater during 1985–2013 is equivalent to a metre-high layer if spread uniformly across its geographical domain. We find that the groundwater storage loss in northern India has increased rapidly from 17 km3 to 189 km3 between the pre-2002 and 2002–2013 periods. This loss in northern India is, therefore, an excellent example of rapid surface greening and sub-surface drying—a result of an interplay of socio-political and environmental factors. As groundwater continues to be treated as a common natural resource and no clear definition exists to guide policymaking, this study also illustrates how the administrative district level approach can solve the widespread problem of depletion.  相似文献   

12.
A large imbalance between recharge and water withdrawal has caused vital regions of the High Plains Aquifer (HPA) to experience significant declines in storage. A new predevelopment map coupled with a synthesis of annual water levels demonstrates that aquifer storage has declined by approximately 410 km3 since the 1930s, a 15% larger decline than previous estimates. If current rates of decline continue, much of the Southern High Plains and parts of the Central High Plains will have insufficient water for irrigation within the next 20 to 30 years, whereas most of the Northern High Plains will experience little change in storage. In the western parts of the Central and northern part of the Southern High Plains, saturated thickness has locally declined by more than 50%, and is currently declining at rates of 10% to 20% of initial thickness per decade. The most agriculturally productive portions of the High Plains will not support irrigated production within a matter of decades without significant changes in management.  相似文献   

13.
We propose a new method for groundwater recharge rate estimation in regions with stream-aquifer interactions, at a linear scale on the order of 10 km and more. The method is based on visual identification and quantification of classically recognized water table contour patterns. Simple quantitative analysis of these patterns can be done manually from measurements on a map, or from more complex GIS data extraction and curve fitting. Recharge rate is then estimated from the groundwater table contour parameters, streambed gradients, and aquifer transmissivity using an analytical model for groundwater flow between parallel perennial streams. Recharge estimates were obtained in three regions (areas of 1500, 2200, and 3300 km2) using available water table maps produced by different methods at different times in the area of High Plains Aquifer in Nebraska. One region is located in the largely undeveloped Nebraska Sand Hills area, while the other two regions are located at a transition zone from Sand Hills to loess-covered area and include areas where groundwater is used for irrigation. Obtained recharge rates are consistent with other independent estimates. The approach is useful and robust diagnostic tool for preliminary estimates of recharge rates, evaluation of the quality of groundwater table maps, identification of priority areas for further aquifer characterization and expansion of groundwater monitoring networks prior to using more detailed methods.  相似文献   

14.
Permian evaporite deposits have been extensively dissolved beneath the perimeter of the Southern High Plains in the Texas Panhandle. Hydrologic and geochemical data were collected from six test wells to determine hydrogeochemical processes involved and the source and flow paths of ground water moving in salt-dissolution zones. Geochemical similarities and hydraulic-head relationships indicate that ground water dissolving halite and anhydrite moves downward from aquifers in post-Permian formations and follows flow paths influenced by topography. Holocene salt-dissolution rates probably are lower than Tertiary and Pleistocene rates owing to regional changes in physiography and climate that probably decreased the amount of recharge to salt-dissolution zones. Present as well as palaeohydrologic ground-water velocities and salt-dissolution rates are probably less beneath the Southern High Plains than in adjacent, peripheral salt-dissolution zones because of lower hydraulic conductivities and lower hydraulic-head gradients. Salinities in peripheral salt-dissolution zones are low (67 000 to 95 000 mg L?1) despite high solubility of halite, reflecting relatively open circulation of ground water. In interior salt-dissolution zones beneath the Southern High Plains, ground-water circulation is low and water composition tends to reach halite saturation.  相似文献   

15.
Groundwater studies face computational limitations when providing local detail (such as well drawdown) within regional models. We adapt the Analytic Element Method (AEM) to extend separation of variable solutions for a rectangle to domains composed of multiple interconnected rectangular elements. Each rectangle contains a series solution that satisfies the governing equations and coefficients are adjusted to match boundary conditions at the edge of the domain and continuity conditions across adjacent rectangles. A complete mathematical implementation is presented including matrices to solve boundary and continuity conditions. This approach gathers the mathematical functions associated with head and velocity within a small set of functions for each rectangle, enabling fast computation of these variables. Benchmark studies verify that conservation of mass and energy conditions are accurately satisfied using a method of images solution, and also develop a solution for heterogeneous hydraulic conductivity with log normal distribution. A case study illustrates that the methods are capable of modeling local detail within a large-scale regional model of the High Plains Aquifer in the central USA and reports the numerical costs associated with increasing resolution, where use is made of GIS datasets for thousands of rectangular elements each with unique geologic and hydrologic properties, Methods are applicable to interconnected rectangular domains in other fields of study such as heat conduction, electrical conduction, and unsaturated groundwater flow.  相似文献   

16.
Groundwater discharge from the Riverine Plains of the southern Murray‐Darling Basin is a major process contributing salt to the Murray River in Australia. In this study, data from an irrigated 60 000 ha catchment in the Riverine Plains were analysed to understand groundwater discharge into deeply incised drains, the process dominating salt mobilization from the catchment. We applied three integrated methodologies: classification and regression trees (CART), conceptual modelling and artificial neural networks (ANNs) to a comprehensive, spatially lumped, monthly data set from July 1975 to December 2004. Using CART analysis, it was shown that rainfall was the most important variable consistently explaining the salt load patterns at the catchment outlet. Using the conceptual model representing spatially lumped groundwater discharge into deeply incised drains, we demonstrated that salt mobilization from the study catchment can be well represented by a rainfall contribution, influenced by the hydraulic head in the deep regional aquifer and potential evapotranspiration. Using ANNs, it was confirmed that rainfall had a much higher impact on salt loads at the catchment outlet than irrigation water use. All these results demonstrate that under conditions similar to those experienced from 1975 to 2004, it is rainfall rather than irrigation water use that governs salt mobilization from the study catchment. Management of salt mobilization from irrigated catchments has traditionally focussed on the improvement of irrigation practices but it could be equally important to further understand the scope for management to control groundwater discharge in these irrigation areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Many cultured pearl farms are located in areas of the Pacific that have thriving, highly diverse fish communities but the impacts of farming on these communities are poorly understood. We studied the effects of pearl oyster farming on shore fish abundance and diversity in the lagoon of Ahe, French Polynesia by adapting roving diver census methods to the coral reef bommies of the lagoon and compared 16 sites with high pearl farming impact to others with no direct impact. Pearl farming has a slightly positive effect on reef fish abundance (N) and no significant impact on fish diversity (H) or community composition. This is important when considering the ecological sustainability of pearl farming in French Polynesia and suggests that a potential synergy between pearl farms and marine conservation should be further explored.  相似文献   

18.
Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide quantitative measurement of terrestrial water storage (TWS) changes with unprecedented accuracy. Combining GRACE-observed TWS changes and independent estimates of water change in soil and snow and surface reservoirs offers a means for estimating groundwater storage change. Since its launch in March 2002, GRACE time-variable gravity data have been successfully used to quantify long-term groundwater storage changes in different regions over the world, including northwest India, the High Plains Aquifer and the Central Valley in the USA, the North China Plain, Middle East, and southern Murray–Darling Basin in Australia, where groundwater storage has been significantly depleted in recent years (or decades). It is difficult to rely on in situ groundwater measurements for accurate quantification of large, regional-scale groundwater storage changes, especially at long timescales due to inadequate spatial and temporal coverage of in situ data and uncertainties in storage coefficients. The now nearly 13 years of GRACE gravity data provide a successful and unique complementary tool for monitoring and measuring groundwater changes on a global and regional basis. Despite the successful applications of GRACE in studying global groundwater storage change, there are still some major challenges limiting the application and interpretation of GRACE data. In this paper, we present an overview of GRACE applications in groundwater studies and discuss if and how the main challenges to using GRACE data can be addressed.  相似文献   

19.
In South Africa, approximately 98% of the predicted total surface water resources are already being used up. Consequently, the National Water Resource Strategy considers groundwater to be important for the future planning and management of water resources. In this case, quantifying groundwater budgets is a prerequisite because they provide a means for evaluating the availability and sustainability of a water supply. This study estimated the regional groundwater budgets for the Inkomati-Usuthu Water Management Area (Usuthu, Komati, Sabie-Sand, and Crocodile) using the classical hydrological continuity equation. The equation was used to describe prevailing feedback loops between groundwater draft, recharge, baseflow, and storage change. The results were coarser scale estimates which, beforehand, were derived from the 2006 study. In the years to follow, groundwater reliance intensified and there was also the historic 2015/2016 drought. This inevitably led to an increased draft while the rest of the components of the groundwater budgets experienced decreases. Both Crocodile and Sabie-Sand experienced groundwater storage depletion which led to reduced baseflow and groundwater availability, while groundwater recharge contrarily increased due to capture. Conversely, the other two catchments experienced relatively lower drafts with correspondingly higher groundwater availability and recharge while storage change was positive. The results highlighted the need for adaptive water management whose effectiveness relies on predictive studies. Consequently, future models should be developed to capture the spatial and temporal dynamism of the natural groundwater budget due to climate change, water demands, and population growth predictions.  相似文献   

20.
The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global‐scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional‐scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional‐scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional‐scale models with global‐scale analyses would greatly enhance knowledge of the global groundwater depletion problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号