首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas‐phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high‐pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High‐pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high‐pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (~10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast‐developing gas contamination (0‐3 months) or large length scales (~1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small‐volume, low‐pressure leakage events.  相似文献   

2.
The vertical portion of a shale gas well, known as the “tophole” is often drilled using an air‐hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3‐D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high‐pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre‐existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane.  相似文献   

3.
4.
5.
6.
7.
Natural Attenuation of Aromatic Hydrocarbons in a Shallow Sand Aquifer   总被引:8,自引:0,他引:8  
Inadvertent release of petroleum products such as gasoline into the subsurface can initiate ground water contamination, particularly by the toxic, water-soluble and mobile gasoline components: benzene, toluene and xylenes (BTX). This study was undertaken to examine the processes controlling the rate of movement and the persistence of dissolved BTX in ground water in a shallow, unconfined sand aquifer.
Water containing about 7.6 mg/ L total BTX was introduced below the water table and the migration of contaminants through a sandy aquifer was monitored using a dense sampling network. BTX components migrated slightly slower than the ground water due to sorptive retardation. Essentially all the injected mass of BTX was lost within 434 days due to biodegradation. Rates of mass loss were similar for all monoaromatics; benzene was the only component to persist beyond 270 days. Laboratory biodegradation experiments produced similar rates, even when the initial BTX concentration varied.
A dominant control over BTX biodegradation was the availability of dissolved oxygen. BTX persisted at the field site in layers low in dissolved oxygen. Decreasing mass loss rates over time observed in the field experiment are not likely due to first-order deeradation rates, but rather to the persistence of small fractions of BTX mass in anoxic layers.  相似文献   

8.
9.
10.
11.
12.
13.
Water table temperatures inferred from dissolved noble gas concentrations (noble gas temperatures, NGT) are useful as a quantitative proxy for air temperature change since the last glacial maximum. Despite their importance in paleoclimate research, few studies have investigated the relationship between NGT and actual recharge temperatures in field settings. This study presents dissolved noble gas data from a shallow unconfined aquifer heavily impacted by agriculture. Considering samples unaffected by degassing, NGT calculated from common physically based interpretive gas dissolution models that correct measured noble gas concentrations for "excess air" agreed with measured water table temperatures (WTT). The ability to fit data to multiple interpretive models indicates that model goodness-of-fit does not necessarily mean that the model reflects actual gas dissolution processes. Although NGT are useful in that they reflect WTT, caution is recommended when using these interpretive models. There was no measurable difference in excess air characteristics (amount and degree of fractionation) between two recharge regimes studied (higher flux recharge primarily during spring and summer vs. continuous, low flux recharge). Approximately 20% of samples had dissolved gas concentrations below equilibrium concentration with respect to atmospheric pressure, indicating degassing. Geochemical and dissolved gas data indicate that saturated zone denitrification caused degassing by gas stripping. Modeling indicates that minor degassing (<10% ΔNe) may cause underestimation of ground water recharge temperature by up to 2°C. Such errors are problematic because degassing may not be apparent and degassed samples may be fit by a model with a high degree of certainty.  相似文献   

14.
15.
Unlined municipal waste stabilization lagoons are potential sources of ground-water contamination. Fourteen monitoring wells were installed around the Mc Ville, North Dakota lagoon, a site at which the impoundment is excavated into permeable sediments of an unconfined glacio-fluvial aquifer with a shallow water table. One cell at the site, Cell I, retains waste water continuously, while another, Cell II, is used for periodic overflow discharges from Cell I. Seepage through the bottom of Cell I passes through a strongly reducing organic sludge layer. Sulfate in the waste water is reduced to sulfide and possibly precipitated as sulfide minerals in or below this sludge layer. In the unsaturated or shallow saturated zone beneath the pond, the infiltrating waste water reduces ferric iron in iron oxide minerals to more soluble ferrous iron. Proximal down-gradient well analyses indicate high iron concentrations and very low sulfate levels. Downgradient wells near the lagoon have very high ammonium concentrations. The source of the ammonium is either rapid infiltration from Cell II or denitrification of the nitrate present in ground water upgradient from the lagoon. About 300 feet downgradient from Cell I, ammonium concentrations decline to near zero. The most likely mechanism for this decrease is cation  相似文献   

16.
利用数值模拟与含水层垂向应力反演的方法,对降雨与河流荷载作用下静乐井区应力进行定量计算,并从区域应力场与同一构造区其他前兆测项变化特征对2种方法计算结果进行分析。数值模拟结果显示,降雨与河流荷载的共同作用使静乐井所在区域产生的最大垂向位移约为0.7mm,最大垂向应力约为30hPa;同时段静乐井-含水层垂向应力反演结果显示静乐井-含水层最大垂向应力约为79hPa;数值模拟与静乐井-含水层垂向应力反演结果均表明,静乐井水位高值异常与同时段降雨量增多、河流荷载效应增强关系密切,但2种结果存在一定差异。通过可反映井区应力场变化特征的山西地震带3级地震缺震和b值、穿过静乐井的GPS基线、地震矩释放、同一构造单元同时段其他前兆测项与静乐井水位高值异常对比等分析结果可知,2017年静乐井水位高值异常期间井区应力场存在显著异常,推测静乐井水位高值异常除受降雨与河流荷载作用的影响外,也可能受构造活动增强的影响。  相似文献   

17.
Interface Upconing Due to a Horizontal Well in Unconfined Aquifer   总被引:2,自引:0,他引:2  
  相似文献   

18.
19.
20.
The stable isotope ratios of groundwater sulfate (34S/32S, 18O/16O) are often used as tracers to help determine the origin of groundwater or groundwater contaminants. In agricultural watersheds, little is known about how the increased use of sulfur as a soil amendment to optimize crop production is affecting the isotopic composition of groundwater sulfate, especially in shallow aquifers. We investigated the isotopic composition of synthetic agricultural fertilizers and groundwater sulfate in an area of intensive agricultural activity, in Ontario, Canada. Groundwater samples from an unconfined surficial sand aquifer (Lake Algonquin Sand Aquifer) were analyzed from multi-level monitoring wells, riverbank seeps, and private domestic wells. Fertilizers used in the area were analyzed for sulfur/sulfate content and stable isotopic composition (δ18O and/or δ34S). Fertilizers were isotopically distinct from geological sources of groundwater sulfate in the watershed and groundwater sulfate exhibited a wide range of δ34S (−6.9 to +20.0‰) and δ18O (−5.0 to +13.7‰) values. Quantitative apportionment of sulfate sources based on stable isotope data alone was not possible, largely because two of the potential fertilizer sulfate sources had an isotopic composition on the mixing line between two natural geological sources of sulfate in the aquifer. This study demonstrates that, when sulfate isotope analysis is being used as a tracer or co-tracer of the origin of groundwater or of contaminants in groundwater, sulfate derived from synthetic fertilizer needs to be considered as a potential source, especially when other parameters such as nitrate independently indicate fertilizer impacts to groundwater quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号