共查询到20条相似文献,搜索用时 15 毫秒
1.
LNAPL Distribution in a Cohesionless Soil: A Field Investigation and Cryogenic Sampler 总被引:1,自引:0,他引:1
D. Durnford J. Brookman J. Billica J. Milligan 《Ground Water Monitoring & Remediation》1991,11(3):115-122
Lighter-than-water Non-Aqueous Phase Liquids (LNAPLs), such as jet fuels or gasolines, are common contaminants of soils and ground water. However, the total volume and distribution of an LNAPL is difficult to accurately determine during a site investigation. LNAPL that is entrapped in the saturated zone due to fluctuating water table conditions is particularly difficult to quantify. Yet, the amount of entrapped product in the saturated zone is theoretically higher, per volume of soil, than the residual product in the unsaturated zone, and small amounts of LNAPL in the saturated zone can contaminate large volumes of ground water.
The only method currently available to quantify the amount of LNAPL is direct soil-core sampling combined with laboratory analysis of the fluid extracted from the soil cores. However, direct sampling of saturated ground water systems with conventional samplers presents a number of problems. In this study, a new sampler was developed that can be used to retrieve undisturbed soil and pore fluid samples from below the water table in cohesionless soils. The sampler uses carbon dioxide to cool the bottom of a saturated soil sample in situ to near freezing. Results of a field study where a prototype sampler was tested demonstrate the usefulness of a cryogenic sampler and show that the amount of LNAPL entrapped below the water table can be a significant part of the total LNAPL in the soil. 相似文献
The only method currently available to quantify the amount of LNAPL is direct soil-core sampling combined with laboratory analysis of the fluid extracted from the soil cores. However, direct sampling of saturated ground water systems with conventional samplers presents a number of problems. In this study, a new sampler was developed that can be used to retrieve undisturbed soil and pore fluid samples from below the water table in cohesionless soils. The sampler uses carbon dioxide to cool the bottom of a saturated soil sample in situ to near freezing. Results of a field study where a prototype sampler was tested demonstrate the usefulness of a cryogenic sampler and show that the amount of LNAPL entrapped below the water table can be a significant part of the total LNAPL in the soil. 相似文献
2.
Nie Yufeng Shen Yunzhong Pail Roland Chen Qiujie Xiao Yun 《Surveys in Geophysics》2022,43(4):1169-1199
Surveys in Geophysics - The gravity field recovery from GRACE (Gravity Recovery and Climate Experiment) mission data is contaminated by both observation noise and dynamic force errors, especially... 相似文献
3.
4.
5.
Field studies in Hawaii aimed at providing a radiocarbon-based chronology of prehistoric eruptive activity have led to a good understanding of the processes that govern the formation and preservation of charcoal beneath basaltic lava flows. Charcoal formation is a rate-dependent process controlled primarily by temperature and duration of heating, as well as by moisture content, density, and size of original woody material. Charcoal will form wherever wood buried by lava is raised to sufficiently high temperatures, but owing to the availability of oxygen it is commonly burned to ash soon after formation. Wherever oxygen circulation is sufficiently restricted, however, charcoal will be preserved, but where atmospheric oxygen circulates freely, charcoal will only be preserved at lower temperature, below that required for charcoal ignition or catalytic oxidation. These factors cause carbonized wood, especially that derived from living roots, to be commonly preserved beneath all parts of pahoehoe flows (where oxygen circulation is restricted), but only under margins of aa. Pratical guidelines are given for the recovery of datable charcoal beneath pahoehoe and aa. Although based on Hawaiian basaltic flows, the guidelines should be applicable to other areas. 相似文献
6.
7.
8.
9.
Michael O. Rivett 《Ground water》1995,33(1):84-98
10.
Yong Wei Christopher Chamberlin Vasily V. Titov Liujuan Tang Eddie N. Bernard 《Pure and Applied Geophysics》2013,170(6-8):1309-1331
During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan’s coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan’s coastline demonstrate the ability and potential of NOAA’s methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation models with powerful computing capabilities. 相似文献
11.
Ranjeet M. Nagare Young-Jin Park Trevor Butterfield Chad Belenky Sheldon Scyrup 《Ground water》2020,58(1):56-69
Contaminated groundwater in fractured bedrock can expose ecosystems to undesired levels of risk for extended periods due to prolonged back-diffusion from rock matrix to permeable fractures. Therefore, it is key to characterize the diffusive mass loading (intrusion) of contaminants into the rock matrix for successful management of contaminated bedrock sites. Even the most detailed site characterization techniques often fail to delineate contamination in rock matrix. This study presents a set of analytical solutions to estimate diffusive mass intrusion into matrix blocks, it is recovered by pumping and concentration rebound when pumping ceases. The analytical models were validated by comparing the results with (1) numerical model results using the same model parameters and (2) observed chloride mass recovery, rebound concentration, and concentration in pumped groundwater at a highly fractured bedrock site in Alberta, Canada. It is also demonstrated that the analytical solutions can be used to estimate the total mass stored in the fractured bedrock prior to any remediation thereby providing insights into site contamination history. The predictive results of the analytical models clearly show that successful remediation by pumping depends largely on diffusive intrusion period. The results of initial mass from the analytical model was used to successfully calibrate a three-dimensional discrete fracture network numerical model further highlighting the utility of the simple analytical solutions in supplementing the more detailed site numerical modeling. Overall, the study shows the utility of simple analytical methods to support long-term management of a contaminated fractured bedrock site including site investigations and complex numerical modeling. 相似文献
12.
13.
14.
15.
Katherine E. O'Leary James F. Barker Robert W. Gillham 《Ground Water Monitoring & Remediation》1995,15(4):99-109
The feasibility of surface application for remediating monoaromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylenes — termed BTEX as a croup) dissolved in ground water under field conditions was investigated at a site within Canadian Forces Base. Borden. Ontario. The surface area was 25 m2 and underlain by 3 to 3.5 m of unsaturated sands soil. For periods of at least 216 hours, between 43 and 72 cm/d of water containing BTEX at concentrations that averaged between 8 and 11 mg/L were continuously applied by drip irrigation. Nitrogen was added to the soil as a nutrient for the final third of the investigation.
Before the applied water reached the water table. BTEX mass losses ranged from of to essentially KM) percent. Less than 6 percent of the BTEX mass losses could be attributed to volatilization from the unsaturated soil. The remaining BTEX mass losses were attributed to biodegradation, mostly in the top 50 cm of the soil, which contained more inorganic nitrogen and organic carbon than the deeper soil. Biodegradation rates increased with applied concentration, nitrogen addition, and exposure to BTEX. Benzene concentrations in ground water attained compliance with Canadian and American drinking water standards only after nitrogen application. 相似文献
Before the applied water reached the water table. BTEX mass losses ranged from of to essentially KM) percent. Less than 6 percent of the BTEX mass losses could be attributed to volatilization from the unsaturated soil. The remaining BTEX mass losses were attributed to biodegradation, mostly in the top 50 cm of the soil, which contained more inorganic nitrogen and organic carbon than the deeper soil. Biodegradation rates increased with applied concentration, nitrogen addition, and exposure to BTEX. Benzene concentrations in ground water attained compliance with Canadian and American drinking water standards only after nitrogen application. 相似文献
16.
Dominique Sorel John A. Cherry Suzanne Lesage 《Ground Water Monitoring & Remediation》1998,18(1):114-125
The in situ vertical circulation column (ISVCC) is a cylindrical containment system consisting of an instrumented steel cylinder used for experimental ground water studies in sandy aquifers. Vertical flow is imposed inside the ISVCC. Although vertical wells are an option, the ISVCC installed in the Borden Aquifer is instrumented with horizontal wells and monitoring ports to avoid creating vertical preferential flow paths. The cylinder was driven downward into the aquifer using a small backhoe equipped with a vibrating plate. The ISVCC penetrates the 2.3-m-thic sand aquifer and is keyed 20 cm into the underlying clay aquitard. The cylinder was installed inside a 2 m X 2 m steel sheet pile enclosure so that the enclosed segment of aquifer could be conveniently dewatered and then excavated to allow installation of the horizontal wells. The dispersivity of the column was comparable to literature values for long sand-packed laboratory columns.
Pure phase DNAPL (tetrachloroethene and 1,1,1-trichloroethane) was slowly pumped into two ports in the center of the column. Following this DNAPL injection, an aqueous solution of vitamin B12 and reduced titanium was circulated through the column to promote degradation of the solvents. Processes observed in the ISVCC included DNAPL distribution, dissolution, and degradation, and geochemical evolution of the aquifer.
The ISVCC provides a convenient means for testing in situ technologies in the experimental stage or for selection of proven technologies to find the most effective at a specific site. It is inexpensive, easy to install, and maximizes control over flow distribution in a heterogeneous aquifer. Its application will be restricted where low hydraulic conductivity beds are present in the aquifer. 相似文献
Pure phase DNAPL (tetrachloroethene and 1,1,1-trichloroethane) was slowly pumped into two ports in the center of the column. Following this DNAPL injection, an aqueous solution of vitamin B
The ISVCC provides a convenient means for testing in situ technologies in the experimental stage or for selection of proven technologies to find the most effective at a specific site. It is inexpensive, easy to install, and maximizes control over flow distribution in a heterogeneous aquifer. Its application will be restricted where low hydraulic conductivity beds are present in the aquifer. 相似文献
17.
18.
The results of field observations and numerical experiments performed in the past few decades on the dynamics of shallow-water ice-covered streams are analyzed. Particular attention is given to some features of the eddy structures. Mathematical models of ice-covered streams and their practical applications are reviewed. 相似文献
19.
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow‐through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream‐aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow‐through streams. 相似文献