共查询到14条相似文献,搜索用时 15 毫秒
1.
Chemistry of Halogen Oxides in the Troposphere: Comparison of Model Calculations with Recent Field Data 总被引:2,自引:0,他引:2
Jochen Stutz Kai Hebestreit Björn Alicke Ulrich Platt 《Journal of Atmospheric Chemistry》1999,34(1):65-85
Reactive halogen species (RHS = X, XO, HOX, OXO; X = Cl, Br, I) are known to have an important influence on the chemistry in the polar boundary layer (BL), where they are responsible for ozone depletion events in spring. Recent field campaigns at Mace Head, Ireland, and the Dead Sea, Israel, identified for the first time iodine oxide (IO) at mixing ratios of up to 6.6 ppt and 90 ppt bromine oxide (BrO), respectively, by DOAS also at lower latitudes. These results intensified the discussion about the role of the RHS in the mid-latitude BL.Photochemical box model calculations show that the observed IO mixing ratios can destroy ~0.45 ppb ozone per hour. This is comparable to the rates of the known O3-loss processes in the boundary layer. The model studies also reveal that IO, at these levels, has a strong influence on the BL photochemistry, increasing the OH/HO2- and the NO2/NO - ratios. In combination these changes lead to a reduction of the photochemical ozone formation, which - in addition - reduces ozone mixing ratios by up to 0.15 ppb/h.The studies for the Dead Sea case give no information on the heterogeneous process responsible for the bromine release, but they show that a total of 2 – 4 ppb of total bromine have to be released to explain the observed complete depletion of 60 ppb ozone in 2 – 3 hours. 相似文献
2.
NO, NOx, NOy and O3 have been measuredduring the airborne EXPRESSO experiment, November 96,which took place near Bangui (Central Africa) at thebeginning of the dry season. This period correspondsto an intense burning activity. Chemical andphotochemical characteristics of the planetaryboundary layer, which corresponds most of the time tothe monsoon layer, and the Harmattan layer, which issituated above the latter, have been studied forsavanna as well as rain forest areas. These two layersare very different when considering the chemicalcomposition (especially for ozone and NOz) andthe photochemical age.The relationship of photochemical ozone productionversus photochemical NOx oxidation products hasbeen investigated. Results indicate an ozoneproduction efficiency (OPE) ranging from 6.3 to 14.8in the planetary boundary layer. Thus, this layer ischaracteristic of a photochemically young and activeair mass. In this layer, the ozone potentialproduction increases with the air mass photochemicalage. On the other hand, the Harmattan layer shows anOPE ranging from 4.6 to 7.4. These values arecharacteristic of photochemically well-aged airmasses. In this layer, the ozone potential productionseems to be exhausted with values around 4.0 (i.e., 4ozone molecules produced for each NOx moleculeemitted). 相似文献
3.
P. J. Crutzen N. F. Elansky M. Hahn G. S. Golitsyn C. A. M. Brenninkmeijer D. H. Scharffe I. B. Belikov M. Maiss P. Bergamaschi T. Röckmann A. M. Grisenko V. M. Sevostyanov 《Journal of Atmospheric Chemistry》1998,29(2):179-194
Using a laboratory wagon traveling along the Trans-Siberian railroad, O3, NO, NO2, CO, CH4, SF6 and black carbon aerosol have been measured during the summer of 1996. The expedition from Niznij Novgorod (500 km east of Moscow) to Vladivostok (and back to Moscow) has shown the great potential of the train method; here the first results are presented and discussed. A wealth of boundary layer air data was obtained during the over 18000 km travel without serious contamination problems from the electric train itself. The diurnal O3 cycle peaked generally below 50 nmole/mole, showed the effects of changes in J(NO2), and often dropped to a few nmole/mole at night time during inversions. Over the vast Siberian lowlands situated between the Ural mountains and the river Yenisey, CH4 levels were consistently elevated at around 1.95 µmole/mole, which we mainly attribute to wetland emissions. Over eastern Siberia, however, CH4 levels were generally lower at 1.85 µmole/mole. In contrast, over the west Siberian lowlands, CO levels were relatively low, often reaching values of only 110 nmole/mole, whereas over eastern Siberia CO levels were higher. Very high CO levels were detected over a 2000 km section east of Chita, along the river Amur, which represented an enormous polluted air mass. 14C analysis performed on several CO samples confirms that the origin was biomass burning. SF6, which was measured as a general conserved tracer, showed an eastward attenuation from 4.0 to 3.9 pmole/mole, with peaks in a number of places due to local Russian emissions. 相似文献
4.
Craig Stroud Sasha Madronich Elliot Atlas Christopher Cantrell Alan Fried Brian Wert Brian Ridley Fred Eisele Lee Mauldin Richard Shetter Barry Lefer Frank Flocke Andy Weinheimer Mike Coffey Brian Heikes Robert Talbot Donald Blake 《Journal of Atmospheric Chemistry》2004,47(2):107-138
Local ozone production and loss rates for the arctic free troposphere (58–85° N, 1–6 km, February–May) during the TroposphericOzone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 kmlayer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratiosup to 300 pptv in February and for NOx mixing ratios up to 500 pptv in May. These NOx limits are an order of magnitude higher thanmedian NOx levels observed, illustrating the strong dependence ofgross ozone production rates on NOx mixing ratios for the majority of theobservations. The threshold NOx mixing ratio needed for netpositive ozone production was also calculated to increase from NOx 10pptv in February to 25 pptv in May, suggesting that the NOx levels needed to sustain net ozone production are lower in winter than spring. This lower NOx threshold explains how wintertime photochemical ozone production can impact the build-up of ozone over winter and early spring. There is also an altitude dependence as the threshold NOx neededto produce net ozone shifts to higher values at lower altitudes. This partly explains the calculation of net ozone destruction for the 1–3 km layerand net ozone production for the 3–6 km layer throughout the campaign. 相似文献
5.
A. Bregman F. Arnold V. Bürger H. Fisher J. Lelieveld B. A. Scheeren J. Schneider P. C. Siegmund J. Ström A. Waibel W. M. F. Wauben 《Journal of Atmospheric Chemistry》1997,26(3):275-310
In situ aircraft measurements of O3, CO,HNO3, and aerosol particles are presented,performed over the North Sea region in the summerlower stratosphere during the STREAM II campaign(Stratosphere Troposphere Experiments by AircraftMeasurements) in July 1994. Occasionally, high COconcentrations of 200-300 pbbv were measured in thelowermost stratosphere, together with relatively highHNO3 concentrations up to 1.6 ppbv. The particlenumber concentration (at standard pressure andtemperature) between 0.018-1 m decreased acrossthe tropopause, from >1000 cm-3 in the uppertroposphere to <500 cm-3 in the lowermoststratosphere. Since the CO sources are found in thetroposphere, the elevated CO mixing ratios areattributed to mixing of polluted tropospheric air intothe lowermost extratropical stratosphere. Further wehave used a chemical model to illustrate that nitrogenoxide reservoir species (mainly HNO3) determinethe availability of NOx (=NO + NO2) andtherefore largely control the total net O3production in the lower kilometers of thestratosphere. Model simulations, applying additionalNOx perturbations from aircraft, show that theO3 production efficiency of NOx is smallerthan previously assumed, under conditions withrelatively high HNO3 mixing ratios, as observedduring STREAM II. The model simulations furthersuggest a relatively high O3 productionefficiency from CO oxidation, as a result of therelatively high ambient HNO3 and NOxconcentrations, implying that upward transport of COrich air enhances O3 production in the lowermoststratosphere. Analysis of the measurements and themodel calculations suggest that the lowermoststratosphere is a transition region in which thechemistry deviates from both the upper troposphere andlower stratosphere. 相似文献
6.
C. Warneke R. Holzinger A. Hansel A. Jordan W. Lindinger U. Pöschl J. Williams P. Hoor H. Fischer P. J. Crutzen H. A. Scheeren J. Lelieveld 《Journal of Atmospheric Chemistry》2001,38(2):167-185
Airborne measurements of volatile organic compounds (VOC) were performed overthe tropical rainforest in Surinam (0–12 km altitude,2°–7° N, 54°–58° W) using the proton transferreaction mass spectrometry (PTR-MS) technique, which allows online monitoringof compounds like isoprene, its oxidation products methyl vinyl ketone,methacrolein, tentatively identified hydroxy-isoprene-hydroperoxides, andseveral other organic compounds. Isoprene volume mixing ratios (VMR) variedfrom below the detection limit at the highest altitudes to about 7 nmol/molin the planetary boundary layer shortly before sunset. Correlations betweenisoprene and its product compounds were made for different times of day andaltitudes, with the isoprene-hydroperoxides showing the highest correlation.Model calculated mixing ratios of the isoprene oxidation products using adetailed hydrocarbon oxidation mechanism, as well as the intercomparisonmeasurement with air samples collected during the flights in canisters andlater analysed with a GC-FID, showed good agreement with the PTR-MSmeasurements, in particular at the higher mixing ratios.Low OH concentrations in the range of 1–3 × 105molecules cm-3 averaged over 24 hours were calculated due to lossof OH and HO2 in the isoprene oxidation chain, thereby stronglyenhancing the lifetime of gases in the forest boundary layer. 相似文献
7.
Marcin Idczak Patrice Mestayer Jean-Michel Rosant Jean-Francois Sini Michel Violleau 《Boundary-Layer Meteorology》2007,124(1):25-41
In order to investigate the microclimatic conditions in a street canyon, a physical model was used to conduct the Joint ATREUS-PICADA
Experiment (JAPEX) in situ experimental campaign. Four lines of buildings simulated by steel containers were installed to
form three parallel street canyons at 1:5 scale, with width/height aspect ratio approximately 0.40. The reference wind and
atmospheric conditions were measured, as well as the flow velocity and direction in the street. Preliminary results concern
street canyon ventilation and thermal effects on in-canyon airflow, and show that vortical motions appear for reference wind
directions perpendicular to the street axis. The presence of adjacent rows of buildings did not appear to significantly influence
the flow character within the canyon for the case of a low aspect ratio corresponding to a skimming flow regime. The flow
structure was not significantly affected by the thermal effects although some slight interference occurred in the lower part
of the canyon. An analysis of horizontal temperature gradients indicated that a thin boundary layer develops near the heated
facade. These facts imply that the thermal effects are considerable only very close to the wall. 相似文献
8.
G. Chen D. Davis J. Crawford B. Heikes D. O'Sullivan M. Lee F. Eisele L. Mauldin D. Tanner J. Collins J. Barrick B. Anderson D. Blake J. Bradshaw S. Sandholm M. Carroll G. Albercook A. Clarke 《Journal of Atmospheric Chemistry》2001,38(3):317-344
Reported are the results from a comparison of OH,H2O2CH3OOH, and O3 observationswithmodel predictions based on current HOx–CH4reaction mechanisms. The field observations are thoserecorded during the NASA GTE field program, PEM-Tropics A. The major focus ofthis paper is on thosedata generated on the NASA P-3B aircraft during a mission flown in the marineboundary layer (MBL) nearChristmas Island, a site located in the central equatorial Pacific (i.e.,2° N, 157° W). Taking advantage of thestability of the southeastern trade-winds, an air parcel was sampled in aLagrangian mode over a significantfraction of a solar day. Analyses of these data revealed excellent agreementbetween model simulated andobserved OH. In addition, the model simulations reproduced the major featuresin the observed diurnalprofiles of H2O2 and CH3OOH. In the case ofO3, the model captured the key observational feature whichinvolved an early morning maximum. An examination of the MBL HOxbudget indicated that the O(1D) + H2Oreaction is the major source of HOx while the major sinks involveboth physical and chemical processes involving the peroxide species,H2O2 and CH3OOH. Overall, the generally goodagreement between modeland observations suggests that our current understanding ofHOx–CH4 chemistry in the tropical MBL isquite good; however, there remains a need to critically examine this chemistrywhen both CH2O and HO2are added to the species measured. 相似文献
9.
Loreto Donoso Rodrigo Romero Alberto Rondón Emmanuel Fernandez Pedro Oyola Eugenio Sanhueza 《Journal of Atmospheric Chemistry》1996,25(2):201-214
The levels of low molecular weight hydrocarbons were measured at pristine sites and rural locations affected by hydrocarbon emissions from oil and gas producing fields in Venezuela. At the clean sites, lower concentrations of C2 to C6 alkanes were observed, whereas, in comparison with remotes sites, very much higher levels were measured at the polluted sites. Alkenes present relatively high concentrations, with isoprene being the most abundant, all over the study region. The main sources of alkenes are likely to be natural, mainly from vegetation. The levels of alkanes recorded at the clean sites and the alkene levels found everywhere in the region are in agreement with the values reported for other clean sites in the tropics. The increase of ozone production capacity due to the anthropogenic emissions of alkanes from oil and gas fields was estimated. Due to the presence in the atmosphere of important amounts of naturally emitted isoprene, ethene and propene, which makes a substantial contribution to the reactivity of the hydrocarbon mixture, a small increase (<5%) was estimated to occur in the capacity of the ozone production at a regional scale during the rainy season. 相似文献
10.
Intensive measurements of gas and aerosol for 2 weeks were carried out at Qingdao (gas and aerosol in 2000, 2001 and 2002), Fenghuangshan (gas and aerosol in 2000 and 2001), and Dalian (aerosol in 2002) in the winter–spring period. High SO2 episodes were observed on 18 January 2000 at both Qingdao and Fenghuangshan. According to back trajectory calculations and analysis of gaseous species, high SO2 episodes were caused by local pollution and transport.Nitrate, sulfate and ammonium were the major species in PM2.5. Mass fractions of NO3−, nss-SO42− and NH4+ at Qingdao in 2002 were 10%, 12% and 5.5% for PM2.5, respectively, which were higher than that of nss-Ca2+ (1%). Chemical compositions observed at Dalian and Fenghuangshan were similar to those at Qingdao. The mass ratio of nss-SO42−/SO2 at Qingdao in winter was low (< 1.2), indicating that sulfate was probably produced by the slow oxidation of SO2 in the gas phase and/or was transported from outside of Qingdao in winter. The equivalent ratio of NH4+ to nss-SO42− was 1.39, suggesting that ammonium sulfate was one of the major chemical compositions in PM2.5. The NO3−/SO42− ratio at Qingdao was higher than that at remote places in East Asia. Gas and aerosol data obtained at Fenghuangshan were similar to data at Qingdao, suggesting that emissions from small cities may have a great influence on pollution in northern China. 相似文献
11.
Surface observations of several nitrogen oxides in the Canadian high Arctic during the period March-April 1988 are reported. These include data on NO2, the inorganic nitrates HNO3 and particulate nitrate, and the organic nitrates PAN and C3–C7 alkyl-nitrates. It is found that the organic nitrates make up 70–80% of the sum of the measured nitrogen oxides. Based on concurrently measured sulphur oxides, the period of observation was divided into two halves with the first half representing less polluted, more aged air than the second. The preponderance of the organic nitrates was less in the first period than the second. In contrast, there was little difference in the inorganic nitrates and NO2 concentrations. The dominant inorganic nitrate shifted from particulate nitrate in the first period towards gaseous HNO3 in the second. No correlation between the nitrates (inorganic or organic) and O3 was observed; although some indication of a positive correlation between NO2 and O3 has been reported earlier (Bottenheimet al., 1990). Possible explanations for these observations are proposed. A survey of other potential nitrogen oxides that may be present in the Arctic air but not measured in these experiments suggests that the nitrogen oxides not measured here constitute a minor fraction of the total reactive nitrogen (NO
y
).Paper submitted to the 7th International Symposium of the Commission for Atmospheric Chemistry and Global Pollution on the Chemistry of the Global Atmosphere held in Chamrousse, France, from 5 to 11 September 1990. 相似文献
12.
W. Jaeschke T. Salkowski J. P. Dierssen J. T. Trümbach U. Krischke A. Günther 《Journal of Atmospheric Chemistry》1999,34(3):291-319
During two measuring campaigns in early spring 1994 and 1995 (March/April) and one campaign in summer 1994, measurements of ozone, PAN, sulfur dioxide, nitric acid, and particulate nitrate, sulfate, and ammonium (only 1995) were recorded in the Arctic. Observations were made by aircraft at various sites in the eastern and western Arctic. Ozone concentrations showed a steady increase with altitude both in spring and summer. During five flights in springtime, low ozone events (LOEs) could be observed near the surface and up to altitudes of 2000 m. SO2 background concentrations, ranging from detection limit (0.5 nmol/m3) to 5 nmol/m3, were observed during both spring and summer. Distinct maxima up to 55 nmol/m3 in lower altitudes were only obtained in springtime. Concentrations of the organic nitrate PAN were within a similar range as those of the inorganic nitrate HNO3 during spring campaigns. In contrast, concentrations of particulate nitrate were one half an order of magnitude lower. HNO3 concentrations increased significantly with altitude. Evidently, HNO3 was intruded from the stratosphere into the troposphere. Sulfate concentrations ranged between 5 and 30 nmol/m3; ammonium concentrations were obtained within a range from 10 to 50 nmol/m3. 相似文献
13.
Simultaneous Measurements of Black Carbon, PM10, Ozone and NOx Variability at a Locally Polluted Island in the Southern Tropics 总被引:4,自引:0,他引:4
This paper shows a comparative study of particle and surface ozone concentration measurements undertaken simultaneously at two distinct semi-urban locations distant by 4 km at Saint-Denis, the main city of La Réunion island (21.5° S, 55.5° E) during austral autumn (May 2000). Black carbon (BC) particles measured at La Réunion University, the first site situated in the suburbs of Saint-Denis, show straight-forward anti-correlation with ozone, especially during pollution peaks ( 650 ng/m3 and 15 ppbv, for BC and ozone respectively) and at night-time (90 ng/m3 and 18.5 ppbv, for BC and ozone respectively). NOx (NO and NO2) and PM10 particles were also measured in parallel with ozone at Lislet Geoffroy college, a second site situated closer to the city centre. NOx and PM10 particles are anti-correlated with ozone, with noticeable ozone destruction during peak hours (mean 6 and 9 ppbv at 7 a.m. and 8 p.m. respectively) when NOx and PM10 concentrations exhibit maximum values. We observe a net daytime ozone creation (19 ppbv, O3 +4.5 ppbv), following both photochemical and dynamical processes. At night-time however, ozone recovers (mean 11 ppbv) when anthropogenic activities are lower ([BC] 100 ng/m3). BC and PM10 concentration variation obtained during an experiment at the second site shows that the main origin of particles is anthropogenic emission (vehicles), which in turn influences directly ozone variability. Saint-Denis BC and ozone concentrations are also compared to measurements obtained during early autumn (March 2000) at Sainte-Rose (third site), a quite remote oceanic location. Contrarily to Saint-Denis observations, a net daytime ozone loss (14.5 ppbv at 4 p.m.) is noticed at Sainte-Rose while ozone recovers (17 ppbv) at night-time, with however a lower amplitude than at Saint-Denis. Preliminary results presented here are handful data sets for modelling and which may contribute to a better comprehension of ozone variability in relatively polluted areas. 相似文献
14.
Emissions of N2O, CH4, and CO2 from soils at two sites in the tropical savanna of central Venezuela were determined during the dry season in February 1987. Measured arithmetic mean fluxes of N2O, CH4, and CO2 from undisturbed soil plots to the atmosphere were 2.5×109, 4.3×1010, and 3.0×1013 molecules cm-2 s-1, respectively. These fluxes were not significantly affected by burning the grass layer. Emissions of N2O increased fourfold after simulated rainfall, suggesting that production of N2O in savanna soils during the rainy season may be an important source for atmospheric N2O. The CH4 flux measurements indicate that these savanna soils were not a sink, but a small source, for atmospheric methane. Fluxes of CO2 from savanna soils increased ninefold two hours after simulated rainfall, and remained three times higher than normal after 16 hours. More research is needed to clarify the significance of savannas in the global cycles of N2O, CH4, CO2, and other trace gases, especially during the rainy season. 相似文献