首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
本文利用两颗跟飞的GRACE卫星载GPS信标测量数据和基于差分相对TEC的层析算法,实现了全球范围的顶部电离层和等离子体层(450~5000 km) 层析成像.反演结果表明,利用低轨道卫星载GPS信标测量数据可以有效地重建顶部电离层和等离子体层的全球二维分布图像.对不同地磁活动条件下的天基层析反演结果表明,等离子体层电子密度随纬度的分布是不均匀的;在低纬赤道带,从顶部电离层向上延伸直到等离子体层,以及等离子体层中局地的电离增强云团,经常出现近似垂直于磁力线的电子密度柱状增强结构.  相似文献   

2.
This paper presents the results from a study designed to investigate the ability of a newly developed neural network (NN) based model to follow total electron content (TEC) dynamics over the Southern African region. The investigation is carried out by comparing results from the NN model with actual TEC data derived from Global Positioning System (GPS) observations and TEC values predicted by the International Reference Ionosphere (IRI-2007) model during magnetic storm periods over Southern Africa. The magnetic storm conditions chosen for the study presented in this paper occurred during the periods 16–21 April 2002, 1–6 October 2002, and 28 October–01 November 2003. A total of six South African GPS stations were used for the validation of the two models during these periods. A statistical analysis of the comparison between the actual TEC behaviour and that predicted by the two models is shown. In addition, ionosonde measurements from the South African Louisvale (28.5°S, 21.2°E) station, located close to one of the validation GPS stations used, are also considered during the Halloween storm period of 28–31 October 2003. The generalisation of TEC behaviour by the NN model is demonstrated by producing predicted TEC maps during magnetic storm periods over South Africa. Presented results demonstrate the ability of NNs in predicting TEC variability over South Africa during magnetically disturbed conditions, and highlight areas for improvement.  相似文献   

3.
Global plasmaspheric TEC and its relative contribution to GPS TEC   总被引:3,自引:0,他引:3  
The plasmaspheric electron content is directly estimated from the global positioning system (GPS) data onboard JASON-1 Satellite for the first time. Similarly, the ground-based GPS total electron content (TEC) is estimated using about 1000 GPS receivers distributed around the globe. The relative contribution of the plasmaspheric electron content to the ground-based GPS TEC is then estimated globally using these two independent simultaneous measurements; namely ground-based GPS TEC and JASON-1 GPS TEC. Results presented here include data from 3 months of different solar cycle conditions (October 2003, May 2005, and December 2006). The global comparison between the two independent measurements was performed by dividing the data into three different regions; equatorial, mid- and high-latitude regions. This division is essential as the GPS raypaths traverse different distances through the plasmasphere at different latitudes. The raypath length through the plasmasphere decreases as latitude increases. The relative contribution of the plasmaspheric electron content exhibits a diurnal variation that depends on latitude with minimum contribution (10%) during daytime and maximum (up to 60%) at night. The contribution is also maximum at the equatorial region where the GPS raypath traverses a long distance through the plasmasphere compared to its length in mid- and high-latitude regions. Finally, the solar cycle variation of plasmaspheric contribution is also reported globally.  相似文献   

4.
Features of the structure and dynamics of the ionospheric plasma are studied in a comparison the ionospheric total electron content measurements with the phase and amplitude measurements of VLF–LF radio signals on global and regional paths. The ionospheric structure over Europe is reconstructed. The spatiotemporal dynamics of moving ionospheric disturbances under conditions of a powerful geomagnetic storm of March 17, 2015, is examined based on the reconstruction results. Analysis of the phase variation of VLF radio signals, together with the TEC measurement data, is not only an additional tool in the study of the dynamics of ionospheric disturbances; it also makes it possible to estimate electron density disturbances in different ionospheric layers.  相似文献   

5.
Basic properties of the mid-latitude traveling ionospheric disturbances (TIDs) during the maximum phase of a major magnetic storm of 6–8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics (51.9°N,103.0°E), and MORTI located at the observatory of the Institute of Ionosphere (43.2°N, 77.0°E). Observations of the O (557.7 and 630.0 nm) emissions originating from atmospheric layers centered at altitudes of 90 and 250 km were carried out at Irkutsk and of the O2(b1g+X3g) (0-1) emission originating from an atmospheric layer centered at altitude of 94 km was carried out at Almaty. Our radio and optical measurement network observed a storm-induced solitary large-scale wave with duration of 1 h and a wave front width of no less than 5000 km, while it traveled equatorward with a velocity of 200 m/s from 62°N to 38°N geographic latitude. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes. A comparison of the auroral oval parameters with dynamic spectra of TEC variations and optical 630 nm emissions in the frequency range 0.4–4 mHz (250–2500 s periods) showed that as the auroral oval expands into mid-latitudes, also does the region with a developed medium-sale and small-scale TEC structure.  相似文献   

6.
GPS data from the International GNSS Service (IGS) network were used to study the development of the severe geomagnetic storm of November 7–12, 2004, in the total electron content (TEC) on a global scale. The TEC maps were produced for analyzing the storm. For producing the maps over European and North American sectors, GPS measurements from more than 100 stations were used. The dense network of GPS stations provided TEC measurements with a high temporal and spatial resolution. To present the temporal and spatial variation of TEC during the storm, differential TEC maps relative to a quiet day (November 6, 2004) were created. The features of geomagnetic storm attributed to the complex development of ionospheric storm depend on latitude, longitude and local time. The positive, as well as negative effects were detected in TEC variations as a consequence of the evolution of the geomagnetic storm. The maximal effect was registered in the subauroral/auroral ionosphere during substorm activity in the evening and night period. The latitudinal profiles obtained from TEC maps for Europe gave rise to the storm-time dynamic of the ionospheric trough, which was detected on November 7 and 9 at latitudes below 50°N. In the report, features of the response of TEC to the storm for European and North American sectors are analyzed.  相似文献   

7.
Continuous monitoring of ionospheric conditions is essential to monitoring and forecasting space weather. The worldwide use of global navigation satellite systems like the Gobal Positioning System (GPS) makes it possible to continuously monitor the total electron content (TEC) of the ionosphere and plasmasphere up to a height of about 20,000 km. We have developed a system for deriving the TEC from GEONET data rapidly and we use the TEC distribution over Japan in the daily operations of the Space Weather Forecast Center at NICT (RWC Tokyo of ISES). Using instrumental biases from a few days before enables us to drastically shorten the processing time for deriving TEC. The latest TEC values (with a delay of about 1 h) are obtained every 3 h, and most of the values are within 2 TEC units of the actual TEC. We have found our system for deriving TEC rapidly to be useful for continuously monitoring the progress of ionospheric storms under any ionospheric conditions, even those under which the usual ionosonde observations are unable to obtain F-region profiles.  相似文献   

8.
The accuracy of single-frequency ocean altimeters benefits from calibration of the total electron content (TEC) of the ionosphere below the satellite. Data from a global network of Global Positioning System (GPS) receivers provides timely, continuous, and globally well-distributed measurements of ionospheric electron content. For several months we have been running a daily automatic Global Ionospheric Map process which inputs global GPS data and climatological ionosphere data into a Kalman filter, and produces global ionospheric TEC maps and ocean altimeter calibration data within 24 h of the end-of-day. Other groups have successfully applied this output to altimeter data from the GFO satellite and in orbit determination for the TOPEX/Poseidon satellite. Daily comparison of the global TEC maps with independent TEC data from the TOPEX altimeter is performed as a check on the calibration whenever the TOPEX data are available. Comparisons of the global TEC maps against TOPEX data will be discussed. Accuracy is best at mid-to-high absolute latitudes (∣latitude∣>30°) due to the better geographic distribution of GPS receivers and the relative simplicity of the ionosphere. Our highly data-driven technique is relatively less accurate at low latitudes and especially during ionospheric storm periods, due to the relative scarcity of GPS receivers and the structure and volatility of the ionosphere. However, it is still significantly more accurate than climatological models.  相似文献   

9.
Summary The observations of the ACTIVE Project satellites in the interval of March 17–23, 1990 were analyzed for the purpose of studying the response of the outer ionosphere to the magnetic storm with SSC on March 20 at 22.43 UT. In particular, measurements of thermal plasma parameters were used, but VLF broadband measurements and data on energetic ion and electron fluxes in the range of 17.7–272 keV were also available. The results of this case study show that the observations in the morning sector at altitudes around 2000 km reflect well the state of the plasmasphere during enhanced activity, namely the depth to which the plasmasphere has been affected by enhanced magnetospheric convection. They also provide the possibility of monitoring the initial phase of recovery. The early evening observations of the plasma parameters in the outer ionosphere at altitudes of 500–1000 km indicate a distinct trough in electron concentration. In the dusk sector, the equatorward edge of this trough can be assumed to be the projection of the equatorial plasmapause. This, combined with the occurrence of electron temperature peaks and with the morning plasmapause position, enables one to judge whether the plasmaspheric bulge has formed and whether an inner plasmapause has occurred.  相似文献   

10.
Measurements of F-region electron density and temperature at Millstone Hill are compared with results from the IZMIRAN time-dependent mathematical model of the Earths ionosphere and plasmasphere during the periods 16–23 March and 6–12 April 1990. Each of these two periods included geomagnetically quiet intervals followed by major storms. Satisfactory agreement between the model and the data is obtained during the quiet intervals, provided that the recombination rate of O+(4S) ions was decreased by a factor of 1.5 at all altitudes during the nighttime periods 17–18 March, 19–20 March, 6–8 April and 8–9 April in order to increase the NmF2 at night better to match observations. Good model/data agreement is also obtained during the storm periods when vibrationally excited N2 brings about factor-of-2-4 reductions in daytime NmF2. Model calculations are carried out using different expressions for the O+ – O collision frequency for momentum transfer, and the best agreement between the electron-density measurements and the model results is obtained when the CEDAR interim standard formula for the O+ – O collision frequency is used. Deviations from the Boltzmann distribution for the first five vibrational levels of NI were calculated. The calculated distribution is highly non-Boltzmann at vibrational levels j > 2, and the Boltzmann distribution assumption results in the increase of 10–30% in calculated NmF2 during the storm-time periods. During the March storm at solar maximum the model results obtained using the EUVAC solar flux model agree a little better with the observations in comparison with the EUV94 solar flux model. For the April storm period of moderate solar activity the EUV94X model results agree better with the observations in comparison to the EUVAC model.  相似文献   

11.
The propagation of perturbation caused by the interplanetary shock wave of March 17, 2015 from the solar wind through the magnetosheath, magnetosphere, and ionosphere down to the Earth’s surface is analyzed. The onboard satellite measurements, global magnetometer network data, and records by the receivers of the global positioning system (GPS) providing the information about the total electron content (TEC) of the ionosphere are used for the analysis. By the example of this event, various aspects of the influence of the interplanetary shock wave on the near-Earth environment and ground-based engineering systems are considered. It is shown which effects of this influence are well described by the existing theoretical models and which ones need additional research. The formation of the fine structure of the magnetic impulse of the storm sudden commencement (SC)—the preliminary impulse (PI) and main impulse (MI)—is considered. The MI and compression of the magnetospheric magnetic field is observed by the GOES and RBSP satellites and on the geomagnetically conjugate stations; however, the PI was only noted on the Earth. The PI was detected in the afternoon sector practically simultaneously (within 1 min) with the shock wave impact on the magnetopause. The wave’s response to the SC includes the strongly decaying resonant oscillations of the magnetic shells and the magnetoacoustic cavity mode. This study supports the possibility of detecting the ionospheric response to the SC by the GPS method. The TEC response to the MI was detected in the auroral latitudes although not on every radio path. The TEC modulation can be associated with the precipitation of superthermal electrons into the lower ionosphere which is undetectable by riometers. The burst in the intensity of the geomagnetically induced currents caused by an interplanetary shock wave turns out to be higher than the currents during the storm’s commencement, although the SC’s amplitude is noticeably lower than the amplitude of the magnetic bay related to the substorm.  相似文献   

12.
Summary Direct measurements of the thermal plasma parameters in the topside ionosphere reveal variations of the plasmasphere boundary in the dusk sector. The ACTIVE satellite's near-polar orbits at altitudes of 500 – 1800 km around winter solstice 1989 were used to study the bulge region of the plasmasphere during intervals with different levels of geomagnetic agitation. The narrow, sharply defined trough in electron concentration corresponding to the plasmapause under quiet conditions situated at L = 6 – 7 moved to lower L-values with increasing geomagnetic activity. This narrow trough can be found in all main ion constituents. During periods of moderate geomagnetic activity, following the onset of a weak magnetic storm, a portion of the plasmaspheric bulge region was separated from the main plasmaspheric body. This can be seen in the outer ionosphere as an inner narrow trough at lower L-value. Troughs in light ions need no longer coincide with this in electron concentration. He+ is the most sensitive constituent reflecting the dusk sector plasmaspheric situation at this altitude.Dedicated to the Memory of Professor Karel P  相似文献   

13.
The Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and – optionally, if backwater effects have a significant impact on the flow regime – a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) – portraying the rainfall–runoff process – and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF – essentially consisting of the coupled “hydrologic” PoNN and “hydrodynamic” MLFN – to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.  相似文献   

14.
The coastal zones are facing the prospect of changing storm surge statistics due to anthropogenic climate change. In the present study, we examine these prospects for the North Sea based on numerical modelling. The main tool is the barotropic tide-surge model TRIMGEO (Tidal Residual and Intertidal Mudflat Model) to derive storm surge climate and extremes from atmospheric conditions. The analysis is carried out by using an ensemble of four 30-year atmospheric regional simulations under present-day and possible future-enhanced greenhouse gas conditions. The atmospheric regional simulations were prepared within the EU project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). The research strategy of PRUDENCE is to compare simulations of different regional models driven by the same global control and climate change simulations. These global conditions, representative for 1961–1990 and 2071–2100 were prepared by the Hadley Center based on the IPCC A2 SRES scenario. The results suggest that under future climatic conditions, storm surge extremes may increase along the North Sea coast towards the end of this century. Based on a comparison between the results of the different ensemble members as well as on the variability estimated from a high-resolution storm surge reconstruction of the recent decades it is found that this increase is significantly different from zero at the 95% confidence level for most of the North Sea coast. An exception represents the East coast of the UK which is not affected by this increase of storm surge extremes.  相似文献   

15.
Millstone Hill ionospheric storm time measurements of the electron density and temperature during the ionospheric storms (15-16 June 1965; 29–30 September 1969 and 17–18 August 1970) are compared with model results. The model of the Earth’s ionosphere and plasmasphere includes interhemispheric coupling, the H+, O+(4S), O+(2D), O+(2P), NO+, O+2 and N+2 ions, electrons, photoelectrons, the electron and ion temperature, vibrationally excited N2 and the components of thermospheric wind.In order to model the electron temperature at the time of the 16 June 1965 negative storm, the heating rate of the electron gas by photoelectrons in the energy balance equation was multiplied by the factors 5–30 at he altitude above 700 km for the period 4.50-12.00 LT, 16 June 1965. The [O]/[N2] MSIS-86 decrease and vibrationally excited N2 effects are enough to account for the electron density depressions at Millstone Hill during the three storms. The factor of 2 (for 27–30 September 1969 magnetic storm) and the & actor 2.7 (for 16–18 August 1970 magnetic storm) reduction in the daytime peak density due to enhanced vibrationally excited N2 is brought about by the increase in the O++N2 rate factor.  相似文献   

16.
During a nearby passage of the Active satellite above the Millstone Hill radar on 21 March 1990 at local sunset, the satellite and the radar performed simultaneous measurements of upper ionospheric parameters in nearly the same spatial volume. For this purpose the radar carried out a special azimuth-elevation scan to track the satellite. Direct comparisons of radar data and in situ satellite measurements have been carried out quite rarely. In this case, the coincidence of co-ordinated measurements and active ionospheric-magnetospheric processes during an extended storm recovery phase presents a unique occasion resulting in a very valuable data set. The measurements show generally good agreement both during quiet prestorm and storm conditions and the combination of radar and satellite observations gives a more comprehensive picture of the physical processes involved. We find a close relationship between the rapid westward ion drift peak at subauroral latitudes (SAID event) and the occurrence of a stable auroral red (SAR) arc observed after sunset by an all-sky imager and reported in an earlier study of this event. The SAID electric field is caused by the penetration of energetic ions with energies between about 1 keV and 100 keV into the outer plasmasphere to a latitude equatorward of the extent of the plasmasheet electrons. Charge separation results in the observed polarisation field and the SAID. Unusually high molecular ion densities measured by the satellite at altitudes of 700–870 km at subauroral and auroral latitudes point on strong upward-directed ion acceleration processes and an intense neutral gas upwelling. These structures are collocated with a narrow trough in electron density and an electron temperature peak as observed simultaneously by the radar and the satellite probes.  相似文献   

17.
The global pattern of long-term trends and changes in the upper atmosphere and ionosphere has been presented by Laštovička et al. [2006a. Global change in the upper atmosphere. Science 314 (5803), 1253–1254]. Trends in the mesospheric temperature, electron concentration in the lower ionosphere, electron concentration and height of its maximum in the E-region, electron concentration in the F1-region maximum, thermospheric neutral density and F-region ion temperature qualitatively agree with consequences of the enhanced greenhouse effect and form a consistent pattern of global change in the upper atmosphere. Three groups of parameters were identified as not-fitting this global pattern, the F2-region ionosphere, mesospheric water vapour, and the mesosphere/upper thermosphere dynamics. The paper reports progress in development of the global pattern of trends with emphasis to these three open problems. There are several other factors contributing to long-term trends, namely the stratospheric ozone depletion, mesospheric water vapour concentration changes, long-term changes of geomagnetic activity and of the Earth's magnetic field.  相似文献   

18.
When travelling through the ionosphere the signals of space-based radio navigation systems such as the Global Positioning System (GPS) are subject to modifications in amplitude, phase and polarization. In particular, phase changes due to refraction lead to propagation errors of up to 50 m for single-frequency GPS users. If both the LI and the L2 frequencies transmitted by the GPS satellites are measured, first-order range error contributions of the ionosphere can be determined and removed by difference methods. The ionospheric contribution is proportional to the total electron content (TEC) along the ray path between satellite and receiver. Using about ten European GPS receiving stations of the International GPS Service for Geodynamics (IGS), the TEC over Europe is estimated within the geographic ranges –20° 40°E and 32.5° ø 70°N in longitude and latitude, respectively. The derived TEC maps over Europe contribute to the study of horizontal coupling and transport processes during significant ionospheric events. Due to their comprehensive information about the high-latitude ionosphere, EISCAT observations may help to study the influence of ionospheric phenomena upon propagation errors in GPS navigation systems. Since there are still some accuracy limiting problems to be solved in TEC determination using GPS, data comparison of TEC with vertical electron density profiles derived from EISCAT observations is valuable to enhance the accuracy of propagation-error estimations. This is evident both for absolute TEC calibration as well as for the conversion of ray-path-related observations to vertical TEC. The combination of EISCAT data and GPS-derived TEC data enables a better understanding of large-scale ionospheric processes.  相似文献   

19.
To realistically assess the seismic risk relating to built infrastructures in Hong Kong and in the neighbouring coastal cities of southern Guangdong province, it is necessary to predict ground shaking induced by different earthquake scenarios with good accuracy. A companion paper has described the modelling of the spatial and temporal distribution of the diffused seismic activities in the region, based on the newly-developed ‘Expanding Circular Disc’ (ECD) method. Representative Magnitude–Distance (M–R) combinations for both near-field and far-field earthquakes (in relation to Hong Kong) have been derived using the ECD method. The present paper describes the modelling of the response spectrum on rock sites associated with the predicted M–R combinations, using the Component Attenuation Model (CAM) that was also developed recently by the authors, based on stochastic simulations of the seismological model. The significant effects of soil resonance on the response spectrum are described in a separate publication.The accuracy of CAM in modelling ground motion properties on rock sites has been tested here by comparisons with (i) strong motions recorded in Taiwan and South China from the 1999 ‘Chi-Chi’ earthquake in Taiwan (M=7.6), (ii) motions recorded in South China from another earthquake occurring in the southern Taiwan Strait in the same year (M=5.1), and (iii) historical seismic intensity data obtained within South China. The overall capability of CAM in modelling both near-field and far-field attenuation has been shown to be unmatched by existing empirical models. Results of the comparison studies confirm the accuracy of CAM, particularly within an epicentral distance of 300–400 km.This study shows that the developed serviceability response spectra (i.e. at short return periods) are controlled mainly by the earthquake recurrence behaviour of major distant seismic sources. In contrast, the ultimate response spectra (i.e. at long return periods) relate to events with magnitudes close to the maximum credible earthquake (MCE) limit, the effect of which may also be represented by the Characteristic Response Spectrum (CRS). Both types of earthquake scenario can be significantly affected by the regional crustal properties. The proposed response spectrum envelopes have been compared with previously developed recommendations, and a critical review has been conducted. The intrinsic advantages of the ECD–CAM modelling approach have been highlighted, emphasising its directness and transparency when compared with the more complex process required to implement traditional Probabilistic Seismic Hazard Assessment (PSHA).  相似文献   

20.
电离层垂直TEC映射函数的实验观测与统计特性   总被引:2,自引:0,他引:2       下载免费PDF全文
利用GPS信标测量获得的电离层电子浓度总含量(TEC)是沿电波路径的斜向TEC.理论研究和实际应用中,常常需要通过映射函数将斜向TEC转换为垂直方向的TEC,这在当前主要采用对电子浓度分布模型的数值积分得到模型映射函数来实现.本文在考察现有不同模型映射函数的基础上,又提出了一种源于实际观测的实验映射函数的概念与估算方法.我们利用IGS的全球GPS观测站的斜向TEC和JPL提供的垂直TEC数据获得了2006年期间的实验映射函数,并对所得结果进行了初步统计分析.在卫星天顶角较小时,上述实验映射函数和模型映射函数之间相差甚微,均可很好描述垂直TEC与斜TEC之间关系;但卫星天顶角较大时,实验映射函数和常用的模型映射函数之间存在明显差异.本文认为,这种差异主要是因为现有模型映射函数中没有考虑到等离子体层的贡献.我们认为采用基于实验映射函数的模式,或者通过考虑等离子体层的贡献对现有模型映射函数进行改进,可以有效提高电离层TEC的估算精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号