首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
天津2011年秋冬季PM2.5组分特征及其对能见度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011年能见度、相对湿度、风速逐时观测资料和11月16日至12月13日期间颗粒物膜采样数据,分析天津市大气能见度与PM2.5组分的关系。结果表明:天津颗粒物质量浓度与能见度变化总体呈负相关,PM2.5和相对湿度对能见度的影响作用明显。能见度与颗粒物中TC质量浓度变化呈负相关,SO42-,NO3-,OC和EC是影响大气能见度的主要组分,其中SO42-浓度对能见度影响最大,其次为OC浓度、EC浓度,NO3-浓度对能见度的影响相对较小。后向轨迹和混合层高度分析表明,气象条件是造成PM2.5质量浓度分布差异的重要原因。  相似文献   

2.
近年来中国东北地区污染事件频发,为揭示该地区重污染天气分布特征,利用2014—2017年中国东北地区40个城市空气质量数据及对应的高低空天气形势资料,统计分析得到中国东北地区大气污染状况的变化特征以及区域重污染事件的天气学特征。结果表明:2015—2017年中国东北地区PM2.5和PM10年平均质量浓度呈下降趋势,其中PM2.5年平均质量浓度下降的更快,PM2.5最大值出现在辽宁和吉林中部地区约为90—100 μg·m-3,SO2年平均质量浓度较高值分布在辽宁西部地区约为50 μg·m-3,而NO2最大值出现在沈阳—长春—哈尔滨一带,约为45 μg·m-3,CO质量浓度最大值分布在东北沿海地区约为1.6 mg·m-3,相反中国东北地区O3年平均质量浓度呈上升趋势,最大值出现在沿海的大连及营口等地,约为100 μg·m-3。污染物浓度变化具有鲜明的季节变化特征,不同地区PM2.5和PM10与AQI最大值均出现在冬季,SO2冬季质量浓度最大值出现在沈阳(180 μg·m-3),NO2与CO冬季最大值出现在哈尔滨(80 μg·m-3,1.8 mg·m-3)。相反,O3最大值出现在夏季沈阳地区约为140—150 μg·m-3。重度污染级别(200 μg·m-3≤PM2.5 < 300 μg·m-3)和严重污染级别(PM2.5>300 μg·m-3)的空气质量表现出以哈尔滨为中心,向周围迅速减少,辽宁中部又略有增加的特征;中度污染(150 μg·m-3≤PM2.5 < 200 μg·m-3)的天数沈阳>哈尔滨>长春,轻度污染(100 μg·m-3≤PM2.5 < 150 μg·m-3)的天数是沈阳>长春>哈尔滨。引发中国东北地区重污染的天气形势大致可分为高压型,低压型和北高南低型3种,出现比例分别为62%、27%和11%;高压型850 hPa高压脊东移经过中国东北地区,地面处于高压南部或弱高压中心,有时在黑龙江北部或辽宁西南部连续有弱小的低压生成并快速东移过境;低压型850 hPa低压系统发展并东移经过中国东北地区,地面处于低压后弱高压中;北高南低型850 hPa和地面中国东北地区受北面高压和南面低压的共同影响。  相似文献   

3.
为了得到沙尘粒子和沙尘质量浓度的实时定量特征,利用Grimm180粒子仪在塔克拉玛干沙漠对沙尘暴进行了实时观测。通过分析Grimm180粒子仪在2018年5月20日和24日两次沙尘暴过程观测的数据得到:在浮尘、扬沙和沙尘暴期间,PM2.5的质量浓度值随时间变化不大,一般PM2.5浓度值<1500μg·m-3,而PM10在不同阶段的变化比较明显,数值在2000~6000μg·m-3。沙尘粒子谱和沙尘质量浓度谱的分布形状在浮尘、扬沙和沙尘暴基本相同,当粒子直径>0.35μm时,粒子数浓度随直径的增大近似符合M-P分布。从浮尘到扬沙再到沙尘暴,小粒子区(D≤1μm)的占比越来越小,而中粒子区(1μm10μm)的粒子数越来越多并且占比越来越大。当粒子直径为0.35μm左右时,粒子数浓度达到最大值;当粒子直径在25~32μm时,沙尘质量浓度的值最大。在浮尘和扬沙阶段,PM2.5/PM10>25%;每分钟1 L体积内的沙尘粒子总数大约是4×105,最大沙尘质量浓度<20μg·L-1。在沙尘暴阶段,PM2.5/PM10<15%;每分钟1 L体积内的沙尘粒子总数>5×105,最大沙尘质量浓度>25μg·L-1。这些结论为准确地分析沙尘暴的定量特征提供了科学依据。  相似文献   

4.
2013年以来,北京市城区细颗粒物(PM2.5)质量浓度年均值呈逐年降低趋势,但PM2.5重污染事件仍旧频发,污染出现快速甚至爆发增长的成因和理化机制仍存在诸多不确定性。基于北京市城区2013~2020年常规气象要素、PM2.5及其化学组分观测资料,分析了PM2.5在缓慢、快速和爆发三种增长机制下的颗粒物浓度和组分的阈值及其与气象条件的相关关系。结果表明,2013~2020年,北京市城区PM2.5在增长时段(1~24 h间隔)中平均累积速率呈逐年放缓的趋势,大气污染累积阶段中缓慢增长的比重逐年升高。在判别标准逐渐严苛的前提下,爆发增长的比重逐年变化不大(4%~7%)。2013~2016年爆发增长的PM2.5浓度阈值为62μg m-3,2017年后,该阈值严苛至45μg m-3。82μg m-3为2018年以来极易出现PM2.5爆发增长的界限值,高于此值后爆发增长的概率将...  相似文献   

5.
利用西安市2016—2021年逐小时PM2.5浓度监测数据和气象观测数据,基于极端梯度提升机器学习算法模型(extreme Gradient Boosting, XGBoost),选择气象因子和时间因子作为特征变量,对西安市逐小时PM2.5浓度进行预报试验。结果表明:西安市PM2.5浓度与平均气温和能见度显著负相关,冬季PM2.5浓度与相对湿度和露点温度显著正相关,偏东风更易诱发重污染天气。西安市12月底至翌年1月初空气污染频发,但PM2.5浓度总体逐年降低。冬季PM2.5浓度的双峰形日变化最明显,最高值分别出现在凌晨和11时。西安市PM2.5浓度变化存在“周末效应”。模型能够较为真实地反映PM2.5浓度量级和演变趋势的变化,预报值与实况值之间的决定系数为0.77、平均绝对误差为12.79μg·m-3、均方根误差为18.68μg·m-3。模型秋冬季表现较为稳定,预报效果...  相似文献   

6.
2010年长江三角洲临安本底站PM2.5理化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
2010年在代表长三角区域背景地区的浙江省临安区域大气本底站开展了对大气细粒子PM2.5为期1年的地面观测,并对细粒子中水溶性离子和碳组分的季节变化特征进行了分析。临安2010年大气中PM2.5质量浓度平均为 (58.2±50.8) μg·m-3,PM2.5质量浓度季节变化明显。利用HYSPLIT4模式计算了2010年临安72 h后向轨迹,根据轨迹计算与聚类结果,结合地面观测的PM2.5数据进行了分析。研究表明:临安地区因受到长江三角洲区域及偏北气流引起的污染传输影响,呈现出高细粒子水平特征。PM2.5中总水溶性离子年平均质量浓度为 (28.5±17.7) μg·m-3,占PM2.5质量浓度的47%。其中,气溶胶组分SO42-,NO3-和NH4+所占比例最大,共占总水溶性离子的69%。PM2.5中有机碳和元素碳的年平均质量浓度分别为 (10.1±6.7) μg·m-3和 (2.4±1.8) μg·m-3。有机碳和元素碳质量浓度显著相关,表明有机碳和元素碳主要来自相同的排放源。  相似文献   

7.
广州亚运会期间鼎湖山站大气污染特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解广州亚运会期间华南区域大气质量状况以及气象条件对区域本底浓度值的影响,2010年11月对鼎湖山站主要污染物NOx,SO2,O3,PM10和PM2.5进行了连续在线观测。利用MICAPS,NCEP FNL资料及后向轨迹模拟对观测时段大气污染物变化特征进行了分析。结果表明:观测时期鼎湖山区域NO2,SO2和O3平均体积分数分别为 (7.2±3.1)×10-9,(8.5±3.8)×10-9和 (28.7±9.8)×10-9。PM10和PM2.5的月平均质量浓度分别达到113 μg·m-3和81 μg·m-3,PM2.5超标日数达13 d (标准为世界卫生组织第1阶段值,日平均值为75 μg·m-3)。不同时段日变化分析表明,广州亚运会期间高值时段 (定义为PM2.5质量浓度超过世界卫生组织的IT.1标准的时段) NOx和O3平均体积分数为13.2×10-9和20.9×10-9,较2009年同期分别下降了41.3%和10.7%。不利气象要素影响和污染物区域传输作用是形成珠江三角洲区域大气本底 (鼎湖山地区) 细粒子污染偏高的主要原因。  相似文献   

8.
对中国中东部3个区域大气本底观测站2015年12月—2017年12月PM10质量浓度及其化学成分空间分布与季节变化特征进行研究,结果显示:研究期间龙凤山站、临安站和金沙站平均PM10质量浓度分别为57.5,62.2 μg·m-3和57.6 μg·m-3。其中临安站和金沙站2017年PM10质量浓度较2016年有所下降,但龙凤山站有所上升。与2013年相比,临安站和金沙站平均PM10质量浓度分别降低29.3%和26.2%。临安站SO42-,NO3-和NH4+平均质量浓度分别为9.9,8.2 μg·m-3和3.7 μg·m-3,金沙站分别为10.2,6.7 μg·m-3和2.6 μg·m-3,均高于龙凤山站的5.9,4.9 μg·m-3和2.1 μg·m-3,其中龙凤山站和临安站的NO3-与SO42-质量浓度比值较高(0.9和0.8),金沙站较低(0.6)。龙凤山站的有机碳(OC)和元素碳(EC)质量浓度分别为10.1 μg·m-3和2.7 μg·m-3,临安站为6.7 μg·m-3和3.1 μg·m-3,金沙站为4.7 μg·m-3和2.3 μg·m-3,即龙凤山站OC最高,金沙站最低,3个站点的EC基本相当,临安站略高。与2013年相比,研究期间临安站SO42-,NH4+和OC分别下降38.1%,26.0%和55.6%,金沙站分别下降46.3%,51.9%和44.7%,但临安站和金沙站的NO3-分别上升12.3%和15.5%;临安站EC下降27.9%,金沙站EC上升4.5%。3个站点夏季PM10,NO3-,EC质量浓度及NO3-与SO42-质量浓度比值均最低。  相似文献   

9.
银川大气污染物浓度变化特征及其与气象条件的关系   总被引:1,自引:0,他引:1  
利用2013年银川地区6个监测点污染物质量浓度和同期气象要素数据,对区域内污染物浓度变化特征及其与气象条件的关系进行分析。结果表明:银川市区PM10年均值超标0.7倍,PM2.5年均值超标0.4倍,SO2和NO2也有一定程度超标,CO和O3未超标|1、2、11月和12月为SO2、NO2、PM10、PM2.5、CO质量浓度较高月,O3浓度最高月为5月,次高月为10月|9:00-12:00和21:00-00:00是SO2、NO2、PM10、PM2.5和CO质量浓度较高的两个时段,O3浓度一般于15:00达到最大;6类污染物普遍表现出季节性的准7 d周期和全年性的准30 d周期|空气质量状况良的频率是56 %,轻度污染26 %,优仅为12%;首要污染物以PM10、PM2.5和SO2为主|风速与SO2、NO2和CO具有良好的负相关关系,与O3则呈显著正相关关系,风速对PM10和PM2.5影响较复杂,当风速小于某一值时,有利于PM10和PM2.5扩散,当风速达到一定程度后,又会导致PM10和PM2.5浓度的增加|降水对污染物有较好的冲刷作用,且对SO2的清除作用最明显,对O3的清洁作用最弱。  相似文献   

10.
利用我国366个环境质量监测站的逐时观测资料,统计分析中国区域2017年PM2.5浓度的变化情况,绘制其时空分布图。研究结果表明:(1)2017年年均PM2.5浓度最大为和田地区,浓度为133μg/m3,年均PM2.5浓度最小为云南迪庆,浓度为10μg/m3,,其极值分布大致呈现南低北高,西低东高的趋势。(2)根据年平均值,日平均值最大值,最小值以及其差值的时空分布情况,PM2.5质量浓度相对较大的地区为华北与东北部分地区,少部分位于华中地区,相对较小的区域为西北,西南以及东南沿海地区。(3)PM2.5质量浓度的季节性变化趋势大致为冬季>秋季>春季>夏季,其中新疆、西藏等地PM2.5质量浓度变化受季节变化影响相对较大,华南及沿海地区受季节变化影响相对较小。   相似文献   

11.
利用北京市观象台2008年3月2019年2月PM10质量浓度数据,通过均值、偏差、Daniel趋势检验相关分析及显著性检验等统计方法,结合主要气象因子,分析PM10质量浓度变化特征。结果显示:2008-2018年PM10质量浓度年均值总体呈显著下降趋势,但均未达到国家二级限值标准;春季的质量浓度最大,其次为秋、冬季的,夏季的最小;月均值呈“M”形变化特征。PM10质量浓度总体呈周末的高于工作日的周末效应。PM10质量浓度日变化呈早上及夜间的双峰形特征,各季节峰值出现时间略有差异。PM10质量浓度随着风速的增大呈现先上升后下降的变化,在3.4 m·s-1时最高,为269.1μg·m-3。风向为偏东、北或偏南时,PM10质量浓度超过二级限值标准的频次较高。PM10质量浓度与降雪的相关性高于与同等级降水的相关性。  相似文献   

12.
利用山东青岛2017年1月至2020年12月的大气颗粒物质量浓度、常规气象观测资料以及全球数据同化系统(Global Data Assimilation System,GDAS)数据,研究了该地区大气颗粒物的污染特征,基于拉格朗日混合单粒子轨道模型(Hybrid Single Particle Lagrangian Integrated Trajectory Model,HYSPLIT)和轨迹统计(TrajStat)软件对青岛市大气颗粒物的传输路径进行了研究,运用潜在源贡献因子分析法(Potential Source Contribution Function,PSCF)和浓度权重轨迹分析法(Concentration Weighted Trajecto‐ry,CWT)对其潜在源区和浓度贡献进行了分析。研究结果表明:(1)青岛市PM2.5质量浓度年均值为35.3μg·m-3,冬季最高,春、秋次之,夏季最低。PM2.5质量浓度年超标率分别为8.22%,7.40%,11.51%和7.38%,重污染日仅出现在冬季,夏季从未出现...  相似文献   

13.
对辽宁农村代表区域站点辽中县马龙村观测站2007年2月至2008年1月酸雨、气态污染物浓度观测资料进行了分析。结果表明:辽中观测站降水的化学组成阴离子主要为SO42-和NO3-,阳离子主要是NH4+和Ca2+, SO42-/ NO3-比值为2.9, Na+/Cl-比值较大,大于1。各种离子浓度冬春季高,夏秋季较低,表明研究区域降水酸化与污染关系不显著。实测的9种主要阴离子、阳离子总浓度比(∑阴离子/∑阳离子)与降水pH值相关性不高,表明目前酸雨研究观测的主要9种阴阳离子不能完全包括降水中的离子组成。降水酸性与近地面污染气体浓度相关各异,pH与NOx、CO、NO2和O3浓度有比较明显的负相关,与SO2浓度负相关不明显;降水pH值与颗粒物等碱性污染物浓度正相关明显。降水中主要致酸离子SO42-和NO3-的浓度与相应酸性气体污染物SO2和NOx近地面浓度的相关不明显。  相似文献   

14.
该文对2016年11—12月北京及周边地区不同站点重污染期间PM2.5质量浓度变化特征进行分析,并结合地面和探空气象要素及化学组分等对重污染成因进行深入探讨,比较了其中两次持续3 d及以上重污染过程的异同。结果表明:重污染期间北京及周边地区PM2.5质量浓度较高,北京上甸子站、顺义站、朝阳站的PM2.5质量浓度分别为73.1,130.8,226.0 μg·m-3,河北保定站和石家庄站分别为357.8 μg·m-3和346.9 μg·m-3。12月17—21日重污染过程比11月3—5日持续时间更长且PM2.5质量浓度更高。通过对11—12月所有重污染过程分析发现,北京颗粒物重污染发生的主要气象条件是静稳天气。在排放源相对稳定情况下,逆温层的结构、演变和持续时间决定了重污染的程度,其中污染持续时间和污染期间的主导逆温层类型演变对重污染程度有较好的指示作用。较低的水平风速、逆温层的持续出现及更多的燃煤和机动车尾气排放是12月17—21日污染偏重的原因。  相似文献   

15.
为研究石家庄市采暖期与非采暖期大气细颗粒物(PM2.5)中多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)的污染特征及其人群健康效应,采集了石家庄市2017年1月—2019年12月每月10—16日PM2.5样品,使用气相色谱-质谱联用仪测定PM2.5中优先控制的16种多环芳烃的浓度,分析采暖期与非采暖期PM2.5中多环芳烃的污染水平及组成特征,利用特征比值法和主成分分析法对其来源进行定性判断,并采用健康风险评估模型以及预期寿命损失评估多环芳烃对人群的健康风险。结果表明:(1)PM2.5及其中多环芳烃浓度平均水平在采暖期分别为106.00μg/m3、44.17 ng/m3,非采暖期分别为73.00μg/m3、40.17 ng/m3。16种多环芳烃中含量最高的是苯并[a]芘,其次为苯并[k]荧蒽、苯并[b]荧蒽、?。多环芳烃单体环数越高其致癌作用越强,不同环...  相似文献   

16.
利用地面大气颗粒物质量浓度观测资料、探空和NECP再分析资料以及地面激光雷达探测资料,对2021年3月13—15日沈阳地区污染事件过程展开分析,探讨大气污染物质量浓度、大气环流背景与气溶胶垂直分布等特征。结果表明: 3月13日PM2.5质量浓度最高值出现在06:00—07:00,约为220.0—230.0 μg·m-3,15日12:00开始显著降低,而PM10质量浓度在15:00出现显著增加,为258.3 μg·m-3。SO2和NO2浓度较高值均出现在3月13日10:00时左右,分别为40.1 μg·m-3和101.3 μg·m-3。CO质量浓度最高值出现在13日16:00—17:00,约为8.8 mg·m-3。沈阳地区臭氧的最高值均出现在午后,13日和14日午后(12:00—16:00)臭氧最大值为102.4—113.7 μg·m-3。蒙古气旋东移过程中逐渐发展加强,其后部西北风将沙尘向东南方向输送。沈阳地区沙尘发展旺盛时存在不稳定层结,同时伴有显著的上升运动,有利于沙尘粒子的垂直混合和向下游输送。3月15日02:00(北京时间15日10:00)气溶胶消光最大值出现在0.7 km处,消光系数约为6.0 km-1。近地面激光雷达退偏比显著增加至0.4—0.5,近地面以非球形粒子(粗颗粒物)为主的沙尘或浮尘。  相似文献   

17.
探究京津冀及周边地区大气细颗粒物(PM2.5)和臭氧(O3)短期暴露对人群因病就诊的急性影响及其季节性差异,为区域性大气污染的协同治理提供流行病学证据。收集2013年1月1日—2018年12月31日京津冀及周边地区共14个城市100家医院门诊的日就诊量,以及大气PM2.5和O3日均浓度和气象因子数据,基于时间序列研究设计,采用二阶段统计分析策略(广义相加模型联合meta分析),在控制气象因子和时间趋势等混杂因素的基础上构建双污染物模型,分析大气PM2.5和O3短期暴露对人群因病就诊的影响。研究期间,大气PM2.5和O3日均浓度平均分别为 72.2±56.8 μg/m3和 58.2±36.9 μg/m3,医院门诊就诊量达6257万人 · 次。双污染物模型结果显示,移动平均滞后0—1 d的PM2.5和O3暴露浓度每升高10 μg/m3,医院门诊就诊量分别增加0.25%(95%置信区间(95%CI):0.20%—0.29%)和0.15%(95%CI:0.07%—0.22%);拟合季节分层模型发现,冷季PM2.5暴露对门诊就诊量的急性影响较强,而O3相关效应则呈现出暖季较强的特征。京津冀及周边地区大气PM2.5和O3短期暴露均增大人群因病就诊的风险,提示应采取积极措施协同治理大气PM2.5和O3复合污染,同时重视污染物冷、暖季风险的差异。   相似文献   

18.
利用2015年1月至2017年12月中国环境监测总站全国城市空气质量实时发布平台中公布的克拉玛依5个监测点数据和同时期克拉玛依国家基本气象站的观测数据,分别研究了克拉玛依市4个行政区的PM2.5浓度的时空变化特征以及气象条件对克拉玛依PM2.5浓度变化的影响。结果表明:从月份上看,克拉玛依每年的1月、2月、12月PM2.5浓度最高,3月、11月PM2.5浓度较高,其中,独山子每年2月的PM2.5浓度均最高,2016年2月独山子PM2.5平均浓度最高,达到134 μg·m-3,超过国家一级标准值的2.8倍,属于中度污染,从季节上看,克拉玛依四季PM2.5浓度变化呈现波峰波谷变化趋势,表现为冬季最高,春季次之,夏季、秋季各区变化不一的特点,采暖期的PM2.5浓度高于非采暖期的PM2.5浓度;克拉玛依PM2.5浓度在空间上的总体分布为:独山子区>白碱滩区>克拉玛依区>乌尔禾区;从风向、风速、气温、气压和相对湿度等气象要素与PM2.5浓度的相关性来看,气压、相对湿度与PM2.5浓度呈显著正相关,气温、风速、风向与PM2.5浓度呈负相关,其中气温、风向与PM2.5浓度呈显著负相关。  相似文献   

19.
李星敏  董自鹏  赵奎锋  陈闯  彭艳 《气象》2022,48(5):647-657
利用2016年3月至2020年2月逐时气象和PM2.5质量浓度观测资料,依据《霾的观测和预报等级(QX/T 113—2010)》(以下简称2010行标)和《霾的观测识别》(GB/T 36542—2018)(以下简称2018国标)两种标准规定的判识方法,分析了在不同标准下陕西省霾出现频率的差异。结果表明:采用2018国标判识的霾出现频率明显多于采用2010行标的霾出现频率,若均以霾现象持续6 h及以上作为判定标准,则两者得到的霾日数相当。在80%≤相对湿度<95%时,用2018国标判识的霾出现频率比采用2010行标多,湿度越大,增加越明显;气溶胶吸湿性参数对吸湿增长后气溶胶消光系数的计算影响较大,使用2018国标时应注意该参数在各地的差异。在PM2.5≤75μg·m-3时,采用2018国标仍能识别出霾,显现出湿度对能见度的影响;在PM2.5>75μg·m-3时,当空气污染达到中度及以上时,两者差异缩小。陕西省各地市霾发生频率的月变化均呈现出“冬高夏低”的“U型”分布,...  相似文献   

20.
北京PM1中的化学组成及其控制对策思考   总被引:5,自引:0,他引:5       下载免费PDF全文
通过分析北京城区2007年夏季和秋季、2008年冬季和春季4个季节PM1中硫酸盐、硝酸盐、铵盐、有机物和黑碳等气溶胶化学组成,结合对我国及全球主要区域PM10中上述气溶胶组分及矿物气溶胶组成的评估,发现因受干旱区产生的沙尘和城市逸散性粉尘的共同影响,整个亚洲大陆,尤其是我国的矿物气溶胶浓度与欧美国家城市区域气溶胶总和的平均值相当或更高。我国在重视控制PM2.5等细粒子污染的同时,不应忽视对PM2.5~PM10之间粗粒子的控制力度;北京城区春、夏、秋、冬的PM1平均质量浓度分别约为94,74,66 μg·m-3和91 μg·m-3,全年平均约为81 μg·m-3,其中有机物气溶胶约占41%,硫酸盐占16%,硝酸盐占13%,铵盐占8%,黑碳和氯化物分别占11%和3%,细矿物气溶胶约贡献7%。对于PM2.5污染的控制,关键是消减PM1中主要气溶胶粒子的排放与转化,其中对有机物的控制更为重要,尽管对于北京而言进一步污染控制的难度已经很大。从科学上来说,即使我国的控制措施能百分之百实现,也很难稳定地达到欧美国家的空气质量水平,因为我国本底矿物气溶胶的浓度较高。应进一步评估各项控制措施的适用性,并制定考虑我国人群健康状况的PM2.5空气质量标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号