首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
北京大气能见度的主要影响因子   总被引:4,自引:3,他引:1       下载免费PDF全文
利用北京市道面自动气象站、国家级自动气象站等多种观测数据分析北京地区2007—2015年能见度及其主要影响因子, 并挑选两次典型低能见度事件过程进行详细分析。从空间分布看, 北京西北地区能见度明显高于中心城区和东南大部地区。从时间分布看, 北京地区平均能见度最大值出现在5月, 最小值出现在7月; 日间的最低值多出现在06:00(北京时, 下同)左右, 冬季略向后推迟; 最高值多出现在16:00前后, 冬季略有提前。整体而言, 2007—2015年北京地区发生低能见度事件的概率为62.14%, 且发生低能见度的事件集中于1~5 km, 霾事件中干霾、湿霾的发生频率分别为86.13%和13.87%。能见度的主要影响因子为相对湿度、风速和PM2.5浓度。其中, 能见度与风速呈正相关, 与相对湿度和PM2.5浓度呈反相关。需要指出的是, 当相对湿度增加至80%, 能见度受PM2.5浓度的影响程度在下降, 而主要受相对湿度的影响。基于所选个例, 当北京地区出现湿霾事件时, 能见度的恶化程度远高于干霾事件, 且PM2.5浓度需比干霾事件时下降得更低才能有效改善能见度。  相似文献   

2.
2009年秋冬季天津低能见度天气下气溶胶污染特征   总被引:8,自引:0,他引:8  
姚青  蔡子颖  韩素芹  曲平 《气象》2012,38(9):1096-1102
为研究天津城区秋、冬季雾霾等低能见度天气下气溶胶污染特征,采用2009年10—12月的大气能见度及相关气象和环境监测数据,并结合一次典型雾霾事件分析PM10和PM2.5质量浓度演化过程及其垂直分布特征。结果表明,低能见度天气占秋、冬季观测时长的一半以上,其中以霾天气为主;典型低能见度过程分析显示,霾日近地层内PM2.5分布均匀,表现出显著的区域污染特征;雾日气溶胶质量浓度先升高后下降,系气溶胶粒子吸湿性增长与导致可溶性组份溶出的湿清除协同作用,低层PM2.5质量浓度显著高于较高层,其垂直分布差异与相对湿度的垂直变化和逆温层高度有关。  相似文献   

3.
2013年至今,中国冬季与雾霾相伴的低能见度事件频发,京津冀及周边地区尤为严重。PM2.5浓度与环境湿度是导致低能见度的最关键影响因素。为了深入研究PM2.5浓度与环境湿度对大气能见度的影响,利用2017年1月京津冀及周边地区MICAPS气象数据与PM2.5观测数据,运用天气学诊断分析方法讨论了不同相对湿度下PM2.5浓度、环境湿度对冬季能见度变化的相对贡献,按照地理环境与污染程度差异将京津冀及周边地区划分为北京-天津地区与河北-山东地区,建立了PM2.5浓度与环境湿度(由露点温度、温度代表)对能见度的多元回归方程,并对2015、2016、2018、2019年冬季能见度进行了回算检验。结果显示:相对湿度低于70%、PM2.5浓度低于75 μg/m3时,北京-天津地区与河北-山东地区能见度多高于10 km,PM2.5浓度升高是此时能见度迅速降低的主导因素;相对湿度从70%上升至85%和PM2.5浓度从75 μg/m3升高200 μg/m3的共同作用导致了能见度降低到10 km至5 km;能见度进一步从5 km下降至2 km则更多依赖于相对湿度进一步从85%升高至95%,PM2.5浓度与此时能见度相关减弱;能见度降低至2 km甚至更低主要是由于水汽近饱和状态下(相对湿度95%以上)的雾滴消光引起,与PM2.5浓度的变化关系不大。与不分组直接拟合相比,以相对湿度85%为界线,分别拟合能见度能够很大程度优化多元回归模型,相对湿度高于85%时能见度拟合值的均方根误差从9.2和5.2 km下降至0.5和0.7 km,5 km以下拟合能见度的误差大幅度减小。按相对湿度85%将数据分组所得的拟合方程对2015、2016、2018、2019年1月能见度估算结果较好,观测值与拟合值相关系数均高于0.91,为雾-霾数值预报系统提供了新的能见度参数化算法。   相似文献   

4.
利用2015—2017年唐山市空气质量日空气质量指数、小时PM2.5浓度和气象数据,分析了唐山市重污染特征及PM2.5重污染生成、消散气象条件。结果表明:2015—2017年唐山市重污染天数为减少趋势,年平均重污染天数36 d。冬季发生重污染天数最多,秋季次之。重污染天气中首要污染物为PM2.5、PM10和O3,PM2.5为首要污染物占比87%,PM10占比6%,O3占比7%。小时PM2.5浓度与相对湿度、总云量、24 h变温正相关,与风速、气温、风向、1 h降水负相关。冬季相关性最好,其次是秋季和春季。90%PM2.5重污染相对湿度均为50%以上,冬季和秋季高达98%;风速大于4 m·s-1时,有0.7%的PM2.5达到重污染;降水对PM2.5有一定清除作用。升温、湿度增加和负变压有助于污染天气形成,生成过程中平均风速为1.8 m·s-1,主导风向为SW,其次是S、W。降温、湿度下降、正变压、降水有助于污染天气消散,消散过程中平均风速为3.1 m·s-1,主导风向为E,其次是NE、N。各方位3 m·s-1的风具有清除能力,偏北风具有较好清除能力,风速较其他方向风速小。  相似文献   

5.
北京一次持续霾天气过程气象特征分析   总被引:6,自引:0,他引:6       下载免费PDF全文
2013年1月10-14日,北京平原地区出现了水平能见度在2 km以下、以PM2.5为首要污染物、空气质量持续5 d维持在重度以上污染水平的霾天气。综合分析此次霾天气过程的天气形势、北京地区常规和加密气象资料以及城郊连续观测的PM2.5浓度资料。结果表明:此霾过程期间,北京高空以平直纬向环流为主,受西北偏西气流控制,没有明显冷空气南下影响北京地区,地面多为不利于污染物扩散和稀释的弱气压场;大气层结稳定、风速小(日平均风速小于2 m·s-1)、相对湿度较大(日平均相对湿度在70 %以上)、逆温频率高强度大,边界层内污染物的水平和垂直扩散能力差;北京城区及南部的京津冀地区人类活动排放污染物强度大,在相对稳定和高湿的天气背景下,受地形和城市局地环流的影响,北京本地污染物累积和区域污染物输送以及PM2.5细粒子在高湿条件下的物理化学转化等过程共同作用造成此次北京城区及平原地区污染物浓度快速增长并持续偏高,高浓度PM2.5对大气消光有显著影响,造成低能见度和持续霾天气。  相似文献   

6.
2013年1—3月北京及周边地区雾、霾高发,气候特征异于常年。利用2013年1—3月北京及周边地区6个地面观测站观测资料,研究PM2.5和黑碳 (BC) 的质量浓度、区域分布特征及气象要素的影响情况。结果表明:北京及周边地区PM2.5污染呈区域性高值、污染局地积累以及由南向北输送的特征。北京上甸子站在雾、霾与清洁期间BC与PM2.5质量浓度的比值分别为7.1%和10.3%,雾、霾期间低于清洁期间;而河北固城站在雾、霾与清洁期间BC与PM2.5质量浓度的比值分别为17.5%和11.9%,雾、霾期间明显高于清洁期间。二者相反的比值特征反映在清洁的下游地区雾、霾过程中二次生成的气溶胶所占比例较污染的上游地区偏高。  相似文献   

7.
董德保  方海涛 《气象科技》2015,43(5):939-944
利用合肥地区高时间分辨率观测资料对2013年1月13-15日一次低能见度事件中大气颗粒物变化进行分析,依据能见度、相对湿度和PM2.5浓度将过程划分为轻雾、霾、雾3个阶段,进而研究不同阶段大气颗粒物的微物理特征。结果表明:这次低能见度事件经历了“轻雾—霾—轻雾—雾—轻雾—雾—轻雾”的阶段转换过程。整个过程PM2.5/PM10和PM1/PM2.5与能见度呈负相关关系,雾阶段PM2.5/PM10大,细颗粒物积聚程度较快;而轻雾和霾阶段PM2.5/PM10小且离散程度大,粗颗粒物生成速度较快。不同阶段的颗粒物谱分布存在较大差异,轻雾和霾阶段的细颗粒物数浓度、表面积浓度和体积浓度谱形相似;雾阶段对不同粒径尺度的颗粒物数浓度、表面积浓度和体积浓度均有沉降作用,雾过程持续时间越长,对颗粒物的沉降作用越强。  相似文献   

8.
天津大气能见度与相对湿度、PM10及PM2.5的关系   总被引:7,自引:0,他引:7       下载免费PDF全文
为研究大气气溶胶及空气中水汽与大气能见度下降的关系,利用2009年天津大气边界层观测站大气能见度资料和同期观测的相对湿度、PM10及PM2.5资料,对三者与大气能见度的关系进行了分析。结果表明:大气能见度与相对湿度线性相关系数最高,PM2.5次之;大气能见度随相对湿度的增大而明显降低。相对湿度低于60 %时,大气能见度与PM2.5的非线性相关性较好,与PM10次之,与PM10与PM2.5差值的相关性最差。相对湿度高于60 %时,大气能见度与PM10的非线性相关性较好,与PM10-PM2.5差值的相关性次之。大气能见度与相对湿度非线性相关系数高于线性相关系数。利用相对湿度、PM10及PM2.5数据计算得到了具有季节变化的非线性大气能见度拟合公式,经验证,该公式能较好地模拟天津地区的大气能见度。  相似文献   

9.
《气象》1982,8(10):18-21
相对湿度是识别轻雾和霾的主要依据 霾与轻雾有一定联系,但也有区别。在早期的气象学教科书中,一些学者将霾分为干霾和湿霾,称湿霾为轻雾。细想起来,是有道理的。这是因为轻雾可以由微小水滴组成,也可以由已湿的吸湿性微粒组成。有由小水滴组成的轻雾时,在湿度减小以后能见度会很快转好。由已湿的吸湿性微粒组成的轻雾,在失去  相似文献   

10.
天津2011年秋冬季PM2.5组分特征及其对能见度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011年能见度、相对湿度、风速逐时观测资料和11月16日至12月13日期间颗粒物膜采样数据,分析天津市大气能见度与PM2.5组分的关系。结果表明:天津颗粒物质量浓度与能见度变化总体呈负相关,PM2.5和相对湿度对能见度的影响作用明显。能见度与颗粒物中TC质量浓度变化呈负相关,SO42-,NO3-,OC和EC是影响大气能见度的主要组分,其中SO42-浓度对能见度影响最大,其次为OC浓度、EC浓度,NO3-浓度对能见度的影响相对较小。后向轨迹和混合层高度分析表明,气象条件是造成PM2.5质量浓度分布差异的重要原因。  相似文献   

11.
利用2015年1月至2017年6月桂林国家基本气象站能见度、相对湿度、气温、气压、降水等气象要素和PM10、PM2.5、PM1.0颗粒物质量浓度资料,分析桂林城区大气能见度与颗粒物浓度和气象因子之间关系。结果表明:桂林城区大气能见度和PM10、PM2.5、PM1.0呈对数关系,相关系数分别为-0.341、-0.461、-0.509,颗粒物对大气能见度影响在相对湿度为60%—70%时最为显著。在各气象因子中,大气能见度与风速的相关性最好,其次为相对湿度,与风速呈二次函数关系,与相对湿度呈幂指数关系,与温度相关性较小,与气压在秋冬季节呈正相关,相关系数冬季可达0.301,但在春、夏季节相关性不显著;利用颗粒物浓度和气象要素建立8种大气能见度非线性统计回归模型,比较后发现利用PM1.0、风速、相对湿度、气温等因子建立的不同季节大气能见度拟合公式在实际检验中效果最优,能较好地模拟桂林地区大气能见度的变化。  相似文献   

12.
李星敏  董自鹏  赵奎锋  陈闯  彭艳 《气象》2022,48(5):647-657
利用2016年3月至2020年2月逐时气象和PM2.5质量浓度观测资料,依据《霾的观测和预报等级(QX/T 113—2010)》(以下简称2010行标)和《霾的观测识别》(GB/T 36542—2018)(以下简称2018国标)两种标准规定的判识方法,分析了在不同标准下陕西省霾出现频率的差异。结果表明:采用2018国标判识的霾出现频率明显多于采用2010行标的霾出现频率,若均以霾现象持续6 h及以上作为判定标准,则两者得到的霾日数相当。在80%≤相对湿度<95%时,用2018国标判识的霾出现频率比采用2010行标多,湿度越大,增加越明显;气溶胶吸湿性参数对吸湿增长后气溶胶消光系数的计算影响较大,使用2018国标时应注意该参数在各地的差异。在PM2.5≤75μg·m-3时,采用2018国标仍能识别出霾,显现出湿度对能见度的影响;在PM2.5>75μg·m-3时,当空气污染达到中度及以上时,两者差异缩小。陕西省各地市霾发生频率的月变化均呈现出“冬高夏低”的“U型”分布,...  相似文献   

13.
基于2013年1月9-15日北京地区一次持续雾、霾过程,对环流形势、要素、物理量场以及污染监测情况进行分析。结果表明:高PM2.5和SO2事件持续时间超过100 h,浓度达到严重污染级别。高空为偏西或西南气流且850 hPa有弱暖平流输送和地面倒槽维持少动是有利于雾、霾持续的背景条件。持续轻雾或霾对湿层厚度要求不高,在925 hPa下即可,且湿层越厚,能见度越低。逆温维持是雾、霾持续的主要原因,且轻雾或霾为主时逆温层特点为厚度浅强度弱,高度或强度的突然增大可预示向大雾或雪转换; 850 hPa以下涡度平流较弱是轻雾或霾持续的动力结构;总温度平流垂直分布表现为闭合中心强度在500 hPa明显分界,且相对较弱的平流中心的高度一般在850-1000 hPa之间,当高度达到500 hPa时或可预示雾、霾天气消散。  相似文献   

14.
利用西安市2016—2021年逐小时PM2.5浓度监测数据和气象观测数据,基于极端梯度提升机器学习算法模型(extreme Gradient Boosting, XGBoost),选择气象因子和时间因子作为特征变量,对西安市逐小时PM2.5浓度进行预报试验。结果表明:西安市PM2.5浓度与平均气温和能见度显著负相关,冬季PM2.5浓度与相对湿度和露点温度显著正相关,偏东风更易诱发重污染天气。西安市12月底至翌年1月初空气污染频发,但PM2.5浓度总体逐年降低。冬季PM2.5浓度的双峰形日变化最明显,最高值分别出现在凌晨和11时。西安市PM2.5浓度变化存在“周末效应”。模型能够较为真实地反映PM2.5浓度量级和演变趋势的变化,预报值与实况值之间的决定系数为0.77、平均绝对误差为12.79μg·m-3、均方根误差为18.68μg·m-3。模型秋冬季表现较为稳定,预报效果...  相似文献   

15.
基于常规气象观测资料和PM2.5浓度资料,分析了2019年1月10—14日天津市东丽区出现的一次持续性雾霾天气特征及其成因。结果表明:此次雾霾天气具有明显的阶段性特征,高空平直西风环流、中层暖脊和地面弱气压场为此次雾霾天气出现提供了有利的天气形势。轻雾和霾阶段,能见度变化更易受到相对湿度的影响;而雾阶段,能见度变化更易受到风速的影响。PM2.5浓度与地面气象因子关系密切,与能见度、风速负相关,与相对湿度正相关。当其他气象条件稳定,且周边地区污染物浓度较高时,近地面风向转变,对本地区雾霾的出现起到关键性作用。  相似文献   

16.
利用成都市1980—2021年14个国家气象站的雾日、平均气温、最低气温、相对湿度等观测资料,结合PM2.5、PM10、NO2及SO2等环境监测以及人口数据,对成都地区雾的气候特征及其与城市化进程、空气质量的关系进行分析。结果表明:成都地区雾日气候分布呈现中心最多、东部次之、西北部最少的区域特征;冬季最多,秋季次之,夏季最少的季节特征。且雾日整体呈下降趋势,中心地区雾日的年际变化较大。雾日数与相对湿度、气温、城市化进展密切相关。成都的发展变迁导致了各地区雾日突变年的不同,西部比东部发展更早,因而雾日突变年西部早于东部。大雾影响下,成都地区更容易出现PM2.5污染。近年来,成都地区雾日越多,空气污染物浓度就会越大,尤其是PM2.5浓度增大最为显著。  相似文献   

17.
利用2012~2020年成都市气象站观测资料和环境空气质量监测数据,研究了该地区能见度时空演变规律以及不同等级能见度下气象要素和污染物浓度的关系。结果表明:(1)成都市近9 a年平均能见度呈上升趋势。四季平均能见度由高到低依次为夏季(12.25 km)、春季(10.82 km)、秋季(9.04 km)和冬季(6.33 km)。成都市能见度日变化呈单峰型分布特征,07时能见度最低,17时能见度最高。(2)能见度空间分布特征为东高西低且北高南低,中部中心城区最低。(3)成都市3 km以下低能见度出现频率为10.92%,3~5 km、5~10 km和10~20 km能见度出现频率分别为15.92%、24.95%和22.51%。(4)能见度上升与对应的PM2.5和PM10浓度、相对湿度减少以及风速增加有关。当能见度低于1 km时,多为高湿(RH>96%)低温(T<10.6℃)和小风速(<1.0 m/s)和高浓度(PM2.5>84.8 μg/m3,PM10>129.0 μg/m3)。  相似文献   

18.
为研究霾观测判识标准定量化对雾霾观测记录的影响,选取2006—2012年湖北省18个基准站、基本站和一般站三类国家级地面气象观测站的资料,对已记录和按照相对湿度判识标准统计的雾、轻雾和霾天数进行分析,结果表明:判识标准定量化将使霾的观测记录明显增多,轻雾和雾观测记录略有减少,霾和轻雾观测记录将更趋合理,就湖北省而言,相对湿度在80%~95%之间,应以轻雾和雾为主;通过定时观测时次的能见度、相对湿度,以及日天气现象记录,可以得到历年按照相对湿度判识标准统计的霾和轻雾天数,实现对历史资料序列的订正,形成判识标准改变前后均一化的月年资料序列。判识标准定量化后,不能机械的硬套判识指标,观测员仍需熟练掌握轻雾和霾以及其他视程障碍现象的成因和特征,避免相对湿度在霾观测判识标准上下波动、轻雾处于消散过程阶段,轻雾与霾的频繁转记。  相似文献   

19.
利用宝鸡市2017—2019年PM2.5质量浓度小时数据及相对湿度等气象数据,探讨了宝鸡市PM2.5质量浓度、相对湿度和能见度三者的关系,并利用HYSPLIT后向轨迹模式对3 a冬季重度及以上污染过程主导来源气团进行了聚类分析。研究发现:宝鸡冬季重度及以上污染过程多发生在1月,期间主导风向为西北风和东南风;PM2.5质量浓度与能见度在不同相对湿度条件下有不同的拟合幂函数关系,空气相对湿度>80%时,空气中水汽含量是影响能见度的主要因素,空气相对湿度≤60%时,影响能见度的主要因子是PM2.5质量浓度。2017—2019年冬季宝鸡达重度污染及以上的过程后向轨迹聚类结果略有不同,其中2017年污染以偏北及西南气团近距离输送为主,2018年污染以宝鸡本地积累为主,2019年污染以关中临近城市(西安地区)近距离输送为主;西北路气团移速最快,远距离传输能力最强,偏东路气团移速最慢,远距离传输能力最弱。  相似文献   

20.
应用常规气象观测资料、能见度仪观测资料,分析1999—2018年锦州地区大雾气候特征及成因。结果表明:锦州地区雾日年总频次多年平均为33次,存在12 a、6 a和3 a的变化周期。锦州地区典型大雾过程主要分为弱低压槽型、雨后弱高压型。大雾存在日变化。雾前T-Td为4—14℃,风速为4 m·s-1以下,偏南风占50%,偏北风占38%,静风占12%;雾发展阶段T-Td为0—4℃,平均风速为2.2 m·s-1,偏南风占58%,偏北风占42%;浓雾阶段T-Td为0—2℃,平均风速为1.9 m·s-1,偏南风占58%,偏北风占42%;雾减弱到消散阶段T-Td逐渐升高,平均风速为3.3 m·s-1,偏北风占58%。大雾期间,均出现逆温和湿层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号