首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have applied detailed theories of gyro-synchrotron emission and absorption in a magnetoactive plasma, X-ray production by the bremsstrahlung of non-thermal electrons on ambient hydrogen, and electron relaxation in a partially ionized and magnetized gas to the solar flare burst phenomenon. The hard X-ray and microwave bursts are shown to be consistent with a single source of non-thermal electrons, where both emissions arise from electrons with energies < mc 2. Further-more, the experimental X-ray and microwave data allow us to deduce the properties of the electron distribution, and the values of the ambient magnetic field, the hydrogen density, and the size of the emitting region. The proposed model, although derived mostly from observations of the 7 July 1966 flare, is shown to be representative of this type of event.NAS-NRC Resident Research Associate.  相似文献   

2.
Electron beams in the low corona   总被引:3,自引:0,他引:3  
Selected high-resolution spectrograms of solar fast-drift bursts in the 6.2–8.4 GHz range are presented. The bursts have similar characteristics as metric and decimetric type III bursts: rise and decay in a few thermal collision times, total bandwidth 3% of the center frequency, low polarization, drift rate of the order of the center frequency per second, and flare association. They appear in several groups per flare, each group consisting of some tens of single bursts. Fragmentation is also apparent in frequency; there are many narrowband bursts randomly scattered in the spectrum. The maximum frequency of the bursts is highly variable.The radiation is interpreted in terms of plasma emission of electron beams at plasma densities of more than 1011 cm–-3. At this extremely high frequency, emission from the plasma level even at the harmonic is only possible in a very anisotropic plasma. The scale lengths perpendicular and parallel to the magnetic field can be estimated. A model of the source region and its environment is presented.Paper presented at the 4th CESRA Workshop in Ouranopolis (Greece) 1991.  相似文献   

3.
Litvinenko  Yuri E. 《Solar physics》2003,212(2):379-388
Yohkoh observations strongly suggest that electron acceleration in solar flares occurs in magnetic reconnection regions in the corona above the soft X-ray flare loops. Unfortunately, models for particle acceleration in reconnecting current sheets predict electron energy gains in terms of the reconnection electric field and the thickness of the sheet, both of which are extremely difficult to measure. It can be shown, however, that application of Ohm's law in a turbulent current sheet, combined with energy and Maxwell's equations, leads to a formula for the electron energy gain in terms of the flare power output, the magnetic field strength, the plasma density and temperature in the sheet, and its area. Typical flare parameters correspond to electron energies between a few tens of keV and a few MeV. The calculation supports the viewpoint that electrons that generate the continuum gamma-ray and hard X-ray emissions in impulsive solar flares are accelerated in a large-scale turbulent current sheet above the soft X-ray flare loops.  相似文献   

4.
We analyze multiple-wavelength observations of a two-ribbon flare exhibiting apparent expansion motion of the flare ribbons in the lower atmosphere and rising motion of X-ray emission at the top of newly-formed flare loops. We evaluate magnetic reconnection rate in terms of V r B r by measuring the ribbon-expansion velocity (V r) and the chromospheric magnetic field (B r) swept by the ribbons. We also measure the velocity (V t) of the apparent rising motion of the loop-top X-ray source, and estimate the mean magnetic field (B t) at the top of newly-formed flare loops using the relation 〈V t B t〉≈〈V r B r〉, namely, conservation of reconnection flux along flare loops. For this flare, B t is found to be 120 and 60 G, respectively, during two emission peaks five minutes apart in the impulsive phase. An estimate of the magnetic field in flare loops is also achieved by analyzing the microwave and hard X-ray spectral observations, yielding B=250 and 120 G at the two emission peaks, respectively. The measured B from the microwave spectrum is an appropriately-weighted value of magnetic field from the loop top to the loop leg. Therefore, the two methods to evaluate coronal magnetic field in flaring loops produce fully-consistent results in this event.  相似文献   

5.
The flare plasma temperature calculated from GOES-11 (1.5–12.4 and 3.1–24.8 keV) data is compared with the solar nonthermal fluxes in various energy ranges in the December 6, 2006 event. Particle acceleration and plasma heating episodes took place in the pre-flare and impulsive phases; a hard (ACS SPI > 150 keV) X-ray emission was observed 5 min before the onset of the GOES X-ray flare and was not accompanied by a temperature rise. A close correlation has been found between the flare plasma temperature and the hard X-ray intensity. The temperature delayed by 0.4 min turned out to be directly proportional to the logarithm of the ACS SPI count rate within the first 3 min of the impulsive phase. This shows that the accelerated electrons responsible for the X-ray emission were the main plasma heating source in the pre-flare and impulsive phases. The correlation between the temperature and the hard X-ray intensity disappears after the observation of a resonance peak at a frequency of 245 MHz. Significant electron fluxes may no longer be able to effectively heat the expanding plasma when its density in the interaction region reaches ∼109 cm−3. The observations of the July 23, 2002 and December 5, 2006 events confirm the trends found.  相似文献   

6.
W. Xie  H. Zhang  H. Wang 《Solar physics》2009,254(2):271-283
In this paper, we present a study of the correlation between the speed of flare ribbon separation and the magnetic flux density during the 10 April 2001 solar flare. The study includes the section of the neutral line containing the flare core and its peripheral area. This event shows clear two-ribbon structure and inhomogeneous magnetic fields along the ribbons, so the spatial correlation and distribution of the flare and magnetic parameters can be studied. A weak negative correlation is found between the ribbon separation speed (V r) and the longitudinal magnetic flux density (B z ). This correlation is the weakest around the peak of the flare. Spatially, the correlation is also weakest at the positions of the hard X-ray (HXR) sources. In addition, we estimate the magnetic reconnection rate (electric field strength in the reconnection region E rec) by combining the speed of flare ribbons and the longitudinal magnetic flux density. During flare evolution, the time profiles of the magnetic reconnection rate are similar to that of the ribbon separation speed, and the speeds of ribbon separation are relatively slow in the strong magnetic fields (i.e., V r is negatively correlated with B z ). However, along the flare ribbons, E rec fluctuates in a small range except near the HXR source. A localized enhancement of the reconnection rate corresponds to the position of the HXR source.  相似文献   

7.
Four microwave bursts have been selected from the Nobeyama Radio Polarimeter (NoRP) observations with an extremely flat spectrum in the optically thin part and a very hard spectral index between 0 and ?1 in the maximum phase of all bursts. It is found that the time evolution of the turnover frequency is inversely proportional to the time profiles of the radio flux in all bursts. Based on the nonthermal gyrosynchrotron theory of Ramaty (Astrophys. J. 158, 753, 1969), the local magnetic field strength and the electron spectral index are calculated uniquely from the observed radio spectral index and the turnover frequency. We found that the electron energy spectrum is very hard (spectral index 1?–?2), and the time variation of the magnetic field strength is also inversely proportional to the radio flux as a function of time in all bursts. Hence, the time evolution of the turnover frequency can be explained directly by its dependence on the local magnetic field strength. The high turnover frequency (several tens of GHz) is mainly caused by a strong magnetic field of up to several hundred gauss, and probably by the Razin effect under a high plasma density over \(10^{10}~\mbox{cm}^{-3}\) in the maximum phase of these bursts. Therefore, the extremely flat microwave spectrum can be well understood by the observed high turnover frequency and the calculated hard electron spectral index.  相似文献   

8.
9.
G. Trottet 《Solar physics》1986,104(1):145-163
Observations relevant to the relative timing of hard X-ray, microwave and lower frequency radio bursts in different phases of flare are reviewed. It is shown that such timing comparisons give important information concerning the electron acceleration/injection process, the magnetic field topology at the acceleration site and the flare development itself. In particular it is shown that acceleration begins before the flash phase of flares and that it keeps going on continuously during the entire duration of a flare. Moreover, despite their wide separation in altitude, hard X-ray, microwave and lower frequency sources appear to arise from a common injection of electrons going on continuously through the different phases of flare. In situ acceleration by shock waves giving rise to type II radio emission is briefly discussed. As an alternative interactions between small and large scale magnetic structures is proposed.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

10.
Saku Tsuneta 《Solar physics》1982,113(1-2):35-48
Some X-class flares (hot thermal flares, HTF) observed with the Hinotori satellite show unique behavior: slow time variability, a compact hard X-ray source containing dense (n > 1011 cm–3) and hot (T > 3 × 107 K) plasma, and unusually weak microwave emission in spite of the intense magnetic field (B > 330 G) required theoretically to sustain the hot plasma. These observations show that HTF's have essentially thermal characteristics throughout the flare evolution, while in impulsive flares, there is a transition in the energy release mode from particle acceleration (impulsive phase) to plasma heating (gradual phase). This behavior can be explained in a unified manner by employing parallel DC electric field acting over large distances.  相似文献   

11.
An impulsive flare October 24, 1969 produced two bursts with virtually identical time profiles of 8800 MHz emission and X-rays above 48 keV. The two spikes of hard X-rays correspond in time to the times of sharp brightening and expansion in the H flare. The first burst was not observed at frequencies below 3000 MHz. This cut off is ascribed to plasma cutoff above the low-lying flare.A model of the flare based on H observations at Big Bear shows that the density of electrons with energy above 10 keV is 5 × 107 if the field density is 1011. The observed radio flux would be produced by this electron distribution with the observed field of 200 G. The H emission accompanying the hard electron acceleration is presumed due to excitation of the field atoms by the hard electrons.  相似文献   

12.
A multi-wavelength spatial and temporal analysis of solar high-energy electrons is conducted using the August 20, 2002 flare of an unusually flat (γ1 = 1.8) hard X-ray spectrum. The flare is studied using RHESSI, Hα, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model-independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below ∼100 keV. The positions of the Hα emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Hα emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Hα intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.  相似文献   

13.
From the UCSD OSO-7 X-ray experiment data, we have identified 54 X-ray bursts with 5.1–6.6 keV flux greater than 103 photon cm?2 keV?1 which were not accompanied by visible Hα flare on the solar disk. By studying OSO-5 X-ray spectroheliograms, Hα activity at the limb and the emergence and disappearance of sunspot groups at the limb, we found 17 active centers as likely seats of the X-ray bursts beyond the limb. We present the analysis of 37 X-ray bursts and their physical parameters. We compare our results with those published by Datlowe et al. (1974a, b) for disk events. The distributions of maximum temperature, maximum emission measure, and characteristic cooling time of the over-the-limb events do not significantly differ from those of disk events. We show that of conduction and radiation, the former is the dominant cooling mechanism for the hot flare plasma. Since the disk and over-the-limb bursts are similar, we conclude that the scale height for X-ray emission in the 5–10 keV range is large and is consistent with that of Catalano and Van Allen (1973), 11000 km, for primarily 1–3 keV emission. Twenty-five or about 2/3 of the over-the-limb events had a non-thermal component. The distribution of peak 20 keV flux is not significantly different from that of disk events. However, the spectral index at the time of maximum flux is significantly different for events over the limb and for events near the center of the disk; the spectral index for over-the-limb events is larger by about δγ = 3/4. If hard X-ray emission came only from localized sources low in the chromosphere we would expect that hard X-ray emission, would be occulted over the limb; on the contrary, the observation show that the fraction of soft X-ray bursts which have a nonthermal component is the same on and off of the disk. Thus hard X-ray emission over extended regions is indicated.  相似文献   

14.
This paper deals with a detailed analysis of spectral and imaging observations of the November 5, 1998 (Hα 1B, GOES M1.5) flare obtained over a large spectral range, i.e., from hard X-rays to radiometric wavelengths. These observations allowed us to probe electron acceleration and transport over a large range of altitudes that is to say within small-scale (a few 103 km) and large-scale (a few 105 km) magnetic structures. The observations combined with potential and linear force-free magnetic field extrapolations allow us to show that: (i) Flare energy release and electron acceleration are basically driven by loop–loop interactions at two independent, low lying, null points of the active region magnetic field; (ii) <300 keV hard X-ray-producing electrons are accelerated by a different process (probably DC field acceleration) than relativistic electrons that radiate the microwave emission; and (iii) although there is evidence that hard X-ray and decimetric/metric radio-emitting electrons are produced by the same accelerator, the present observations and analysis did not allow us to find a clear and direct magnetic connection between the hard X-ray emitting region and the radio-emitting sources in the middle corona.  相似文献   

15.
An extensive study of the IMP-6 and IMP-8 plasma and radio wave data has been performed to try to find electron plasma oscillations associated with type III radio noise bursts and low-energy solar electrons. This study shows that electron plasma oscillations are seldom observed in association with solar electron events and type III radio bursts at 1.0 AU. In nearly four years of observations only one event was found in which electron plasma oscillations are clearly associated with solar electrons. For this event the plasma oscillations appeared coincident with the development of a secondary maximum in the electron velocity distribution functions due to solar electrons streaming outwards from the Sun. Numerous cases were found in which no electron plasma oscillations with field strengths greater than 1 μV m?1 could be detected even though electrons from the solar flare were clearly detected at the spacecraft. For the one case in which electron plasma oscillations are definitely produced by the electrons ejected by the solar flare the electric field strength is relatively small, only about 100 μV m?1. This field strength is about a factor of ten smaller than the amplitude of electron plasma oscillations generated by electrons streaming into the solar wind from the bow shock. Electromagnetic radiation, believed to be similar to the type III radio emission, is also observed coming from the region of the more intense electron plasma oscillations upstream of the bow shock. Quantitative calculations of the rate of conversion of the plasma oscillation energy to electromagnetic radiation are presented for plasma oscillations excited by both solar electrons and electrons from the bow shock. These calculations show that neither the type III radio emissions nor the radiation from upstream of the bow shock can be adequately explained by a current theory for the coupling of electron plasma oscillations to electromagnetic radiation. Possible ways of resolving these difficulties are discussed.  相似文献   

16.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

17.
R. Snijders 《Solar physics》1968,4(4):432-445
In this paper an attempt has been made to investigate theoretically the time-profile of an X-ray burst observed at photon energies well below 0.5 MeV. Following De Jager (1967) this type of X-bursts is called deka-keV X-ray bursts. The energy distribution of fast electrons which emit the hard X-ray burst has been computed as a function of time. On the basis of these expressions the time-profile of a deka-keV burst has been calculated. In this paper two plausible initial electron distributions were chosen, a mono-energetic distribution and a maxwellian distribution of electron energies. It has been proved that the process of energy loss of an electron is completely governed by losses due to magnetic bremsstrahlung emission. This implies that the decay shape of a deka-keV X-ray burst is determined by the value of the magnetic-field strength existing in the plasma. A typical decay time of an X-ray burst, which is about 3 min, can be expected theoretically from a thermal plasma of temperature 109 °K confined by a magnetic field of about 750 gauss. The theory developed in this paper indicates that the soft X-ray burst accompanying the deka-keV burst lasts much longer than the deka-keV burst itself.  相似文献   

18.
The multi-wavelength analysis is performed on a flare on September 9, 2002 with data of Owens Valley Solar Arrays (OVSA), Big Bear Solar Observatory (BBSO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and Extreme UV Imager Telescope (EIT), and The Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO). The radio sources at 4.8 and 6.2 GHz located in the intersection of two flaring loops at 195 of SOHO/EIT respectively with two dipole magnetic fields of SOHO/MDI, in which one EIT loop was coincident with an X-ray loop of RHESSI at 12–25 keV, and two Hαbright kernels a1 and a2 of BBSO, respectively at the two footpoints of this loop; the second EIT loop connected another two Hαkernels b1 and b2 and radio sources at 7.8 and 8.2 GHz of OVSA. The maximum phase of microwave bursts was evidently later than that of hard X-ray bursts and Hαkernels a1 and a2, but consistent with that of Hαkernels b1 and b2. Moreover, the flare may be triggered by the interaction of the two flaring loops, which is suggested by the cross-correlation of radio, optical, and X-ray light curves of a common quasi-periodic oscillation in the rising phase, as well as two peaks at about 7 and 9 GHz of the microwave spectra at the peak times of the oscillation, while the bi-directional time delays at two reversal frequencies respectively at 7.8 and 9.4 GHz (similar to the peak frequencies of the microwave spectra) may indicate two reconnection sites at different coronal levels. The microwave and hard X-ray footpoint sources located in different EUV and optical loops may be explained by different magnetic field strength and the pitch angle distribution of nonthermal electrons in these two loops.  相似文献   

19.
Radio and X-ray observations are presented for three flares which show significant activity for several minutes prior to the main impulsive increase in the hard X-ray flux. The activity in this ‘pre-flash’ phase is investigated using 3.5 to 461 keV X-ray data from the Solar Maximum Mission, 100 to 1000 MHz radio data from Zürich, and 169 MHz radio-heliograph data from Nançay. The major results of this study are as follows:
  1. Decimetric pulsations, interpreted as plasma emission at densities of 109–1010 cm?3, and soft X-rays are observed before any Hα or hard X-ray increase.
  2. Some of the metric type III radio bursts appear close in time to hard X-ray peaks but delayed between 0.5 and 1.5 s, with the shorter delays for the bursts with the higher starting frequencies.
  3. The starting frequencies of these type III bursts appear to correlate with the electron temperatures derived from isothermal fits to the hard X-ray spectra. Such a correlation is expected if the particles are released at a constant altitude with an evolving electron distribution. In addition to this effect we find evidence for a downward motion of the acceleration site at the onset of the flash phase.
  4. In some cases the earlier type III bursts occurred at a different location, far from the main position during the flash phase.
  5. The flash phase is characterized by higher hard X-ray temperatures, more rapid increase in X-ray flux, and higher starting frequency of the coincident type III bursts.
  相似文献   

20.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号