首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The 1934–1935 Showa Iwo-jima eruption started with a silicic lava extrusion onto the floor of the submarine Kikai caldera and ceased with the emergence of a lava dome. The central part of the emergent dome consists of lower microcrystalline rhyolite, grading upward into finely vesicular lava, overlain by coarsely vesicular lava with pumice breccia at the top. The lava surface is folded, and folds become tighter toward the marginal part of the dome. The dome margin is characterized by two zones: a fracture zone and a breccia zone. The fracture zone is composed of alternating layers of massive lava and welded oxidized breccia. The breccia zone is the outermost part of the dome, and consists of glassy breccia interpreted to be hyaloclastite. The lava dome contains lava with two slightly different chemical compositions; the marginal part being more dacitic and the central part more rhyolitic. The fold geometry and chemical compositions indicate that the marginal dacite had a slightly higher temperature, lower viscosity, and lower yield stress than the central rhyolite. The high-temperature dacite lava began to effuse in the earlier stage from the central crater. The front of the dome came in contact with seawater and formed hyaloclastite. During the later stage, low-temperature rhyolite lava effused subaerially. As lava was injected into the growing dome, the fracture zone was produced by successive fracturing, ramping, and brecciation of the moving dome front. In the marginal part, hyaloclastite was ramped above the sea surface by progressive increments of the new lava. The central part was folded, forming pumice breccia and wrinkles. Subaerial emplacement of lava was the dominant process during the growth of the Showa Iwo-jima dome.Editorial Responsibility J. McPhie  相似文献   

3.
New field observations with the submersible ALVIN and photographic evidence from a study of the summits of seamounts near the East Pacific Rise show that hyaloclastite deposits occur commonly. Hyaloclastite outcrops were found on six volcanoes at depths from 1240 to 2500 m. These new observations plus laboratory study of new hyaloclastite specimens extend the results of previous studies. Most of the hyaloclastite samples are of hydrovolcanic eruptive origin, but a few show evidence of a predominantly sedimentary origin. Primarily from morphology, we identify several vent areas from which hyaloclastite presumably erupted. The surface appearance of the hyaloclastite deposits varies with distance to these vents, leading us to propose a facies model for deep-sea hyaloclastites on seamount summits. Hyaloclastites of hydromagmatic origin exhibit weak normal grading and bedding-parallel alignment of platy shards. They consist of blocky, sliver and fluidal basalt glass shards and lithics in a matrix that contains pelagic sediment. The shards themselves are remarkably free of even the tiniest crystals and are usually chemically homogeneous. We propose that the shards form mainly by cooling-contraction granulation, but cannot rule out the possibility of limited steam explosivity. Hyaloclastites are closely associated with submarine pahoehoe and we propose that a very rapid eruption rate, promoting clastic-dominated versus flow-dominated eruptive behavior, is the dominant control on hyaloclastite formation. We propose that shard formation occurs during submarine lava fountaining. Gravitational instability of the resulting slurry of shards, sea water and possibly steam causes gravity flow that carries the shards outward from the vent. Further field and modelling studies are needed to test these ideas and more quantitatively constrain the ascent mechanism, eruption dynamics and deposition of deep-sea hyaloclastites.  相似文献   

4.
 We used transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to study magmatic crystals in the Ben Lomond rhyolite lava dome, Taupo Volcanic Center, New Zealand. Using TEM and SEM to investigate the size distributions of these crystals, we identified three size populations: microphenocrysts (>1.2 μm wide), microlites (>0.6 μm wide), and smaller crystals (<0.6 μm wide) which we term "nanolites". The predominant mineral phases of the microlites and nanolites are augites, pigeonites, and hypersthenes. The compositions and microstructures within these pyroxenes indicate disequilibrium crystallization at approximately 850–900  °C and undercoolings as high as 300  °C from equilibrium crystallization temperatures. Complex microstructures resulting from subsolidus reactions in augite and pigeonite are consistent with moderate cooling rates within the upper obsidian layer of the Ben Lomond rhyolite dome. This study demonstrates the existence of sub-micron magmatic crystals in a rhyolite and illustrates the potential of TEM to provide unique information about the crystallization and cooling histories of glassy volcanic rocks. Received: May 8, 1995 / Accepted: November 27, 1995  相似文献   

5.
This paper describes unusual rhyolitic deposits at Dalakvísl, Torfajökull, Iceland that were emplaced during a Quaternary subglacial eruption. Despite its small volume (<0.2 km3), the eruption mechanisms were highly variable and involved both explosive and intrusive phases. The explosive phase involved vesiculation-driven magma fragmentation at the glacier base and generated a pumiceous pyroclastic deposit containing deformed sheets of dense obsidian. Textures suggest that the obsidian was generated by the collapse of partly fragmented foam that was intruding the deposit and water contents indicate quenching at elevated pressures. In contrast, the intrusive phase of the eruption generated vesicle-poor quench hyaloclastites associated with a variety of peperitic lava bodies. The presence of juvenile-rich fluvio-lacustrine sediments is the first documented evidence that meltwater may pond close to the vent during subglacial rhyolite eruptions if the bedrock topography is favourable. In order to explain the variable eruption mechanisms, a conceptual model is presented in which the transition from an explosive to an intrusive eruption was controlled by the space available for fragmentation within the subglacial cavity melted above the vent. When the cavity became completely filled by volcanic deposits, the vent became blocked and rising magma was forced to intrude through poorly consolidated debris. This led to arrested fragmentation and welding of foam domains to form vesicle-poor obsidian lava; the transition to an intrusive eruption has taken place. Although this vent-blocking mechanism is particularly relevant to subglacial eruptions, it may also apply to subaerial rhyolitic eruptions, where patterns of explosive and effusive activity cannot be explained by shallow degassing processes alone. Meanwhile, the variable style of a small-volume subglacial rhyolite eruption further highlights the complex processes that mediate volcano-ice interactions.  相似文献   

6.
Thermal diffusivity of rhyolite melt and rhyolite foam (70–80% porosity) has been measured using the radial heat transfer method. Cylindrical samples (length 50–55 mm, diameter 22 mm) of rhyolite melt and foam have been derived by heating samples of Little Glass Mountain obsidian. Using available data on heat capacity and density of rhyolite melt, the thermal conductivity of samples has been determined. The difference in thermal conductivity between rhyolite melt and foam at igneous temperatures ( 1000°C) is about one order of magnitude. The effect of thermal insulation of magmas due to vesiculation and foaming of the top layer is discussed in terms of the data obtained using a simple illustrative model of magma chamber convection.  相似文献   

7.
Detailed facies analysis of hyaloclastites and associated lavas from eight table mountains and similar "hyaloclastite volcanoes" in the Icelandic rift zone contradict a rapid and continuous, "monogenetic", entirely subglacial evolution of most volcanoes studied. The majority of the exposed hyaloclastite deposits formed in large, stable lakes as indicated by widespread, up to 300-m-thick, continuous sections of deep water, shallow water and emergent facies. Salient features include extensively layered or bedded successions comprising mainly debris flow deposits, turbidites, base surge and fallout deposits consisting of texturally and compositionally variable, slightly altered hyaloclastites, as well as sheet and pillow lavas. In contrast, chaotic assemblages of coarser-grained, more poorly sorted and more strongly palagonitized hyaloclastite tuffs and breccias, as well as scoria and lava are interpreted to have formed under sub- or englacial conditions in small, chimney-like ice cavities or ice-bound lakes. Irregularly shaped and erratically arranged hyaloclastite bodies produced at variable water levels appear to have resulted mainly from rapid changes of the eruptive environment due to repeated build-up and drainage of ice-bound lakes as well as the restricted space between the ice walls. We distinguish a "deep water" facies formed during high water levels of the lake, a hydroclastic shallow water and emergent facies (leakage of the lake or growth of the volcano above the water surface). Our model implies the temporary existence of large, stable lakes in Iceland probably formed by climatically induced ice melting. The highly complex edifices of many table mountains and similar volcanoes were constructed during several eruptive periods in changing environments characterized by contrasting volcanic and sedimentary processes. Received: 10 June 1997 / Accepted: 28 July 1998  相似文献   

8.
Hazardous explosive activity may sporadically accompany the extrusion of silicic lava domes. Modelling of the emplacement of silicic domes is therefore an important task for volcanic hazard assessment. Such modelling has been hampered by a lack of a sufficiently accurate rheological database for silicic lavas with crystals and vesicles. In the present study, the parallel-plate viscometry method was applied to determine the shear viscosity of five natural rhyolitic samples from a vertical section through the Ben Lomond lava dome, Taupo Volcanic Centre, New Zealand. Rheological measurements were performed at volcanologically relevant temperatures (780-950°C) and strain rates (10-5-10-7 s-1). Although these samples are in the metastable state, viscosity determinations, melt composition, as well as water and crystal contents of samples were demonstrably stable during experiments. For samples containing up to 5 vol.% microlites, the composition of the melt, rather than the physical effect of suspended crystals, had greater influence on the effective viscosity of the silicic magma. Samples with 10 vol.% microlites and containing a flow banding defined by microlites show no significant orientational effects on apparent viscosity. The rheological measurements were used together with a simple cooling model to construct thermal and viscosity profiles revealing conditions during the emplacement of the Ben Lomond lava dome.  相似文献   

9.
Mechanically, many volcanoes may be regarded as elastic inclusions, either softer (with a lower Young's modulus) or stiffer (with a higher Young's modulus) than the host-rock matrix. For example, many central volcanoes (stratovolcanoes, composite volcanoes) are composed of rocks that are softer than the crustal segments that host them. This is particularly clear in Iceland where central volcanoes are mostly made of soft rocks such as rhyolite, pyroclastics, hyaloclastites, and sediments whereas the host rock is primarily stiff basaltic lava flows. Most active central volcanoes also contain fluid magma chambers, and many have collapse calderas. Fluid magma chambers are best modelled as cavities (in three dimensions) or holes (in two dimensions), entire calderas as holes, and the ring faults themselves, which commonly include soft materials such as breccias, as soft inclusions. Many hyaloclastite (basaltic breccias) mountains partly buried in the basaltic lava pile also function as soft inclusions. Modelling volcanoes as soft inclusions or holes, we present three main numerical results. The first, using the hole model, shows the mechanical interaction between all the active central volcanoes in Iceland and, in particular, those forming the two main clusters at the north and south end of the East Volcanic Zone (EVZ). The strong indication of mechanical interaction through shared dykes and faults in the northern cluster of the EVZ is supported by observations. The second model, using a soft inclusion, shows that the Torfajökull central volcano, which contains the largest active caldera in Iceland, suppresses the spreading-generated tensile stress in its surroundings. We propose that this partly explains why the proper rift zone northeast of Torfajökull has not managed to propagate through the volcano. Apparently, Torfajökull tends to slow down the rate of southwest propagation of the rift-zone part of the EVZ. The third model, again using a soft inclusion, indicates how the lateral propagation of a segment of the 1783 Laki fissure became arrested in the slopes of the hyaloclastite mountain Laki.  相似文献   

10.
Products of subglacial volcanism can illuminate reconstructions of paleo-environmental conditions on both local and regional scales. Competing interpretations of Pleistocene conditions in south Iceland have been proposed based on an extensive sequence of repeating lava-and-hyaloclastite deposits in the Síða district. We propose here a new eruptive model and refine the glacial environment during eruption based on field research and analytical data for the Síða district lava/hyaloclastite units. Field observations from this and previous studies reveal a repeating sequence of cogenetic lava and hyaloclastite deposits extending many kilometers from their presumed eruptive source. Glasses from lava selvages and unaltered hyaloclastites have very low H2O, S, and CO2 concentrations, indicating significant degassing at or close to atmospheric pressure prior to quenching. We also present a scenario that demonstrates virtual co-emplacement of the two eruptive products. Our data and model results suggest repeated eruptions under thin ice or partially subaerial conditions, rather than eruption under a thick ice sheet or subglacial conditions as previously proposed.  相似文献   

11.
Rhyolites occur as a subordinate component of the basalt-dominated Eastern Snake River Plain volcanic field. The basalt-dominated volcanic field spatially overlaps and post-dates voluminous late Miocene to Pliocene rhyolites of the Yellowstone–Snake River Plain hotspot track. In some areas the basalt lavas are intruded, interlayered or overlain by ~15 km3 of cryptodomes, domes and flows of high-silica rhyolite. These post-hotspot rhyolites have distinctive A-type geochemical signatures including high whole-rock FeOtot/(FeOtot+MgO), high Rb/Sr, low Sr (0.5–10 ppm) and are either aphyric, or contain an anhydrous phenocryst assemblage of sodic sanidine ± plagioclase + quartz > fayalite + ferroaugite > magnetite > ilmenite + accessory zircon + apatite + chevkinite. Nd- and Sr-isotopic compositions overlap with coeval olivine tholeiites (ɛNd = −4 to −6; 87Sr/86Sri = 0.7080–0.7102) and contrast markedly with isotopically evolved Archean country rocks. In at least two cases, the rhyolite lavas occur as cogenetic parts of compositionally zoned (~55–75% SiO2) shield volcanoes. Both consist dominantly of intermediate composition lavas and have cumulative volumes of several 10’s of km3 each. They exhibit two distinct, systematic and continuous types of compositional trends: (1) At Cedar Butte (0.4 Ma) the volcanic rocks are characterized by prominent curvilinear patterns of whole-rock chemical covariation. Whole-rock compositions correlate systematically with changes in phenocryst compositions and assemblages. (2) At Unnamed Butte (1.4 Ma) the lavas are dominated by linear patterns of whole-rock chemical covariation, disequilibrium phenocryst assemblages, and magmatic enclaves. Intermediate compositions in this group resulted from variable amounts of mixing and hybridization of olivine tholeiite and rhyolite parent magmas. Interestingly, models of rhyolite genesis that involve large degrees of melting of Archean crust or previously consolidated mafic or silicic Tertiary intrusions do not produce observed ranges of Nd- and Sr-isotopes, extreme depletions in Sr-concentration, and cogenetic spectra of intermediate rock compositions for both groups. Instead, least-squares mass-balance, energy-constrained assimilation and fractional crystallization modeling, and mineral thermobarometry can explain rhyolite production by 77% low-pressure fractional crystallization of a basaltic trachyandesite parent magma (~55% SiO2), accompanied by minor (0.03–7%) assimilation of Archean upper crust. We present a physical model that links the rhyolites and parental intermediate magmas to primitive olivine tholeiite by fractional crystallization. Assimilation, recharge, mixing and fractional melting occur to limited degrees, but are not essential parts of the rhyolite formation process. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

12.
Oxygen and carbon isotopic analyses were carried out for some typical submarine volcanic products (a lava flow, a pillow fragment and four hyaloclastite breccias) from the northwestern zone of the Mt. Iblei volcanic complex, eastern Sicily. The δ18O value of the perental basaltic magma (6.0 ± 0.2‰), estimated from the analyses of some fresh unaltered glassy samples of various type, lies in the values range of primary basalts. Appreciably higher δ18O values, probably due to low-temperature exchanges with sea water, have been found for lava samples and the interior of the pillow fragment. The δ18O and δ13C of the calcites of the groundmass of the hyaloclastite samples, ranging from 30.59 to 33.65 and from ?2.99 to 0.46‰ respectively, are typical of low-temperature marine carbonates. Because calcite is one of the last minerals to form. these results suggest that the hyaloclastites studied formed entirely in a submarine environment. The18O/16O ratios recorded in the silicate portions of the matrices of the hyaloclasites (δ18O=13.99 to 16.61) are interpreted as the result of halmyrolytic processes occurring at temperatures somewhat higher than that of the sea floor.  相似文献   

13.
A Pleistocene subaqueous, volcanic sequence in South Iceland consists of flows of basaltic hyaloclastite and lava with interbedded sedimentary diamictite units. Emplacement occurred on a distal submarine shelf in drowned valleys along the southern coast of Iceland. The higher sea level was caused by eustatic sea-level change, probably towards the end of a glaciation. This sequence, nearly 700 m thick, rests unconformably on eroded flatlying lavas and sedimentary rocks of likely Tertiary age. A Standard Depositional Unit, describing the flows of hyaloclastite, starts with compact columnar-jointed basalt overlain by cubejointed basalt, and/or pillow lava. This in turn is overlain by thick unstructured hyaloclastite containing aligned basalt lobes, and bedded hyaloclastite at the top. A similar lithofacies succession is valid for proximal to distal locations. The flows were produced by repeated voluminous extrusions of basaltic lava from subaquatic fissures on the Eastern Rift Zone of Iceland. The fissures are assumed to lie in the same general area as the 1783 Laki fissure which produced 12 km3 of basaltic lava. Due to very high extrusion rates, the effective water/melt ratio was low, preventing optimal fragmentation of the melt. The result was a heterogeneous mass of hyaloclastite and fluid melt which moved en masse downslope with the melt at the bottom of the flow and increasingly vesicular hyaloclastite fragments above. The upper and distal parts of the flow moved as low-concentration turbulent suspensions that deposited bedded hyaloclastite.  相似文献   

14.
A series of experiments and petrographic analyses have been run to determine the pre-eruption phase equilibria and ascent dynamics of dacitic lavas composing Black Butte, a dome complex on the flank of Mount Shasta, California. Major and trace element analyses indicate that the Black Butte magma shared a common parent with contemporaneously erupted magmas at the Shasta summit. The Black Butte lava phenocryst phase assemblage (20 v.%) consists of amphibole, plagioclase (core An77.5), and Fe–Ti oxides in a fine-grained (< 0.5 mm) groundmass of plagioclase, pyroxene, Fe–Ti oxides, amphibole, and cristobalite. The phenocryst assemblage and crystal compositions are reproduced experimentally between 890 °C and 910 °C, ≥ 300 MPa, XH2O = 1, and oxygen fugacity = NNO + 1. This study has quantified the extent of three crystallization processes occurring in the Black Butte dacite that can be used to discern ascent processes. Magma ascent rate was quantified using the widths of amphibole breakdown rims in natural samples, using an experimental calibration of rim development in a similar magma at relevant conditions. The majority of rims are 34 ± 10 μm thick, suggesting a time-integrated magma ascent rate of 0.004–0.006 m/s among all four dome lobes. This is comparable to values for effusive samples from the 1980 Mount St. Helens eruption and slightly faster than those estimated at Montserrat. A gap between the compositions of plagioclase phenocryst cores and microlites suggests that while phenocryst growth was continuous throughout ascent, microlite formation did not occur until significantly into ascent. The duration of crystallization is estimated using the magma reservoir depth and ascent rate, as determined from phase equilibria and amphibole rim widths, respectively. Textural analysis of the natural plagioclase crystals yields maximum growth rates of plagioclase phenocryst rims and groundmass microlites of 8.7 × 10− 8 and 2.5 × 10− 8 mm/s, respectively. These rates are comparable to values determined from time-sequenced samples of dacite erupted effusively from Mount St. Helens during 1980 and indicate that syneruptive crystallization processes were important during the Black Butte eruptive cycle.  相似文献   

15.
 The Cerro Chascon-Runtu Jarita Complex is a group of ten Late Pleistocene (∼85 ka) lava domes located in the Andean Central Volcanic Zone of Bolivia. These domes display considerable macroscopic and microscopic evidence of magma mixing. Two groups of domes are defined chemically and geographically. A northern group, the Chascon, consists of four lava bodies of dominantly rhyodacite composition. These bodies contain 43–48% phenocrysts of plagioclase, quartz, sanidine, biotite, and amphibole in a microlite-poor, rhyolitic glass. Rare mafic enclaves and selvages are present. Mineral equilibria yield temperatures from 640 to 750  °C and log ƒO2 of –16. Geochemical data indicate that the pre-eruption magma chamber was zoned from a dominant volume of 68% to minor amounts of 76% SiO2. This zonation is best explained by fractional crystallization and some mixing between rhyodacite and more evolved compositions. The mafic enclaves represent magma that intruded but did not chemically interact much with the evolved magmas. A southern group, the Runtu Jarita, is a linear chain of six small domes (<1 km3 total volume) that probably is the surface expression of a dike. The five most northerly domes are composites of dacitic and rhyolitic compositions. The southernmost dome is dominantly rhyolite with rare mafic enclaves. The composite domes have lower flanks of porphyritic dacite with ∼35 vol.% phenocrysts of plagioclase, orthopyroxene, and hornblende in a microlite-rich, rhyodacitic glass. Sieve-textured plagioclase, mixed populations of disequilibrium plagioclase compositions, xenocrystic quartz, and sanidine with ternary composition reaction rims indicate that the dacite is a hybrid. The central cores of the composite domes are rhyolitic and contain up to 48 vol.% phenocrysts of plagioclase, quartz, sanidine, biotite, and amphibole. This is separated from the dacitic flanks by a banded zone of mingled lava. Macroscopic, microscopic, and petrologic evidence suggest scavenging of phenocrysts from the silicic lava. Mineral equilibria yield temperatures of 625–727  °C and log ƒO2 of –16 for the rhyolite and 926–1000  °C and log ƒO2 of –9.5 for the dacite. The rhyolite is zoned from 73 to 76% SiO2, and fractionation within the rhyolite composition produced this variation. Most of the 63–73% SiO2 compositional range of the lava in this group is the result of mixing between the hybrid dacite and the rhyolite. Eruption of both groups of lavas apparently was triggered by mafic recharge. A paucity of explosive activity suggests that volatile and thermal exchanges between reservoir and recharge magmas were less important than volume increase and the lubricating effects of recharge by mafic magmas. For the Runtu Jarita group, the eruption is best explained by intrusion of a dike of dacite into a chamber of crystal-rich rhyolite close to its solidus. The rhyolite was encapsulated and transported to the surface by the less-viscous dacite magma, which also acted as a lubricant. Simultaneous effusion of the lavas produced the composite domes, and their zonation reflects the subsurface zonation. The role of recharge by hotter, more fluid mafic magma appears to be critical to the eruption of some highly viscous silicic magmas. Received: 23 August 1998 / Accepted: 10 March 1999  相似文献   

16.
The Middle-Upper Miocene Las Burras–Almagro-El Toro (BAT) igneous complex within the Eastern Cordillera of the central Andes (∼24°S; NW Argentina) has revealed evidence of non-explosive interaction of andesitic magma with water or wet clastic sediments in a continental setting, including peperite generation. We describe and interpret lithofacies and emplacement mechanisms in three case studies. The Las Cuevas member (11.8 Ma) comprises facies related to: (i) andesite extruded in a subaqueous setting and generating lobe-hyaloclastite lava; and (ii) marginal parts of subaerial andesite lava dome(s) in contact with surface water, comprising fluidal lava lobes, hyaloclastite, and juvenile clasts with glassy rims. The Lampazar member (7.8 Ma) is represented by a syn-volcanic andesite intrusion and related peperite that formed within unconsolidated, water-saturated, coarse-grained volcaniclastic conglomerate and breccia. The andesite intrusion is finger-shaped and grades into intrusive pillows. Pillows are up to 2 m wide, tightly packed near the intrusion fingers, and gradually become dispersed in the host sediment ≥50 m from the parent intrusion. The Almagro A member (7.2 Ma) shows evidence of mingling between water-saturated, coarse-grained, volcaniclastic alluvial breccia and intruding andesite magma. The resulting intrusive pillows are characterized by ellipsoidal and tubular shape and concentric structure. The high-level penetration of magma in this coarse sediment was unconfined and irregular. Magma was detached in apophyses and lobes with sharp contacts and fluidal shapes, and without quench fragmentation and formation of a hyaloclastite envelope. The presence of peperite and magma–water contact facies in the BAT volcanic sequence indicates the possible availability of water in the system between 11–7 Ma and suggests a depositional setting in this part of the foreland basin of the central Andes characterized by an overall topographically low coastal floodplain that included extensive wetlands.  相似文献   

17.
A new category of large-scale volcanism, here termed Snake River (SR)-type volcanism, is defined with reference to a distinctive volcanic facies association displayed by Miocene rocks in the central Snake River Plain area of southern Idaho and northern Nevada, USA. The facies association contrasts with those typical of silicic volcanism elsewhere and records unusual, voluminous and particularly environmentally devastating styles of eruption that remain poorly understood. It includes: (1) large-volume, lithic-poor rhyolitic ignimbrites with scarce pumice lapilli; (2) extensive, parallel-laminated, medium to coarse-grained ashfall deposits with large cuspate shards, crystals and a paucity of pumice lapilli; many are fused to black vitrophyre; (3) unusually extensive, large-volume rhyolite lavas; (4) unusually intense welding, rheomorphism, and widespread development of lava-like facies in the ignimbrites; (5) extensive, fines-rich ash deposits with abundant ash aggregates (pellets and accretionary lapilli); (6) the ashfall layers and ignimbrites contain abundant clasts of dense obsidian and vitrophyre; (7) a bimodal association between the rhyolitic rocks and numerous, coalescing low-profile basalt lava shields; and (8) widespread evidence of emplacement in lacustrine-alluvial environments, as revealed by intercalated lake sediments, ignimbrite peperites, rhyolitic and basaltic hyaloclastites, basalt pillow-lava deltas, rhyolitic and basaltic phreatomagmatic tuffs, alluvial sands and palaeosols. Many rhyolitic eruptions were high mass-flux, large volume and explosive (VEI 6–8), and involved H2O-poor, low-δ18O, metaluminous rhyolite magmas with unusually low viscosities, partly due to high magmatic temperatures (900–1,050°C). SR-type volcanism contrasts with silicic volcanism at many other volcanic fields, where the fall deposits are typically Plinian with pumice lapilli, the ignimbrites are low to medium grade (non-welded to eutaxitic) with abundant pumice lapilli or fiamme, and the rhyolite extrusions are small volume silicic domes and coulées. SR-type volcanism seems to have occurred at numerous times in Earth history, because elements of the facies association occur within some other volcanic fields, including Trans-Pecos Texas, Etendeka-Paraná, Lebombo, the English Lake District, the Proterozoic Keewanawan volcanics of Minnesota and the Yardea Dacite of Australia. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

18.
Welded tuffs and related pyroclastic deposits are distributed at many localities in northeastern Japan, especially around the volcanoes of the Nasu volcanic zone running from north to south, but they are absent from the region along the Japan Sea. Their geological age varies from the Miocene to the Holocene, those of the Pleistocene being predominant in amount. Petrographically they cover rather a wide range from andesite to rhyolite, among which dacite is most common. The welded tuffs are always compact and hard, with well-developed columnar jointing, carrying parallel-layered obsidian lenticules; and various stages are observed from loose pyroclastic deposits to lava-like welded tuffs. Petrological, petrochemical, and physical properties of these deposits are studied in some detail. From these data some genetic consideration is given for the mechanism of welding, and also for the relation between the nature of parental magma and the formation of such pyroclastic deposits.  相似文献   

19.
A large volume of middle Miocene basaltic rocks is widely distributed across the back-arc region of Northeast Japan, including around the Dewa Mountains. Petrological research has shown that basaltic rocks of the Aosawa Formation around the Dewa Mountains were generated as a result of the opening of the Sea of Japan. To determine the precise ages of the middle Miocene basaltic magmatism, we conducted U–Pb and fission-track (FT) dating of a rhyolite lava that constitutes the uppermost part of the Aosawa Formation. In addition, we estimated the paleostress field of the volcanism using data from a basaltic dike swarm in the same formation. The rhyolite lava yields a U–Pb age of 10.73 ±0.22 Ma (2σ) and a FT age of 10.6 ±1.6 Ma (2σ), and the paleostress analysis suggests a normal-faulting stress regime with a NW–SE-trending σ3-axis, a relatively high stress ratio, and a relatively high magma pressure. Our results show that the late Aosawa magmatism occurred under NW–SE extensional stress and ended at ~ 11 Ma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号