首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵祖斌  高山 《地学前缘》2000,7(2):431-439
分析了华北克拉通新太古代—三叠纪 16个碎屑沉积岩组合样品。与Taylor和McLennan等提出的太古宙—元古宙界线前后沉积岩及上地壳化学组成变化不同 ,新太古代五台群沉积岩具明显负Eu异常 ,相容元素含量很低 ,不相容元素含量较高 ,与典型后太古宙沉积物组成类似。而古元古代沉积岩比五台群显示出异常高的Eu/Eu 值 ,w(Sc) /w(Th) ,w(Cr) /w (Th)比值。青白口纪、寒武纪、石炭纪和二叠纪沉积岩显示正常的后太古宙沉积岩特征。三叠纪沉积岩的Eu/Eu 值 ,w (Sc) /w (Th) ,w(Cr) /w(Th)比值再次显著升高 ,推测与华北和扬子克拉通最终的陆陆碰撞作用有关。因此 ,太古宙—元古宙界线并不一致对应于上地壳演化程度迅速增高。大陆上地壳并非总是向着分异程度提高的方向演化 ,而是部分时期可出现演化程度降低的异常现象。  相似文献   

2.
Origin of granites in an Archean high-grade terrane,southern India   总被引:4,自引:0,他引:4  
Archean deep-level granites in southern India are similar geochemically to young granites from continentalmargin arc systems. They exhibit light REE enriched patterns with variable, but chiefly positive Eu anomalies. This is in striking contrast to the negative Eu anomalies typical in high-level Archean granites. In addition, the deep-level granites are relatively enriched in Ba and Sr and depleted in total REE and high field strength elements (HFSE). One pluton, the Sankari granite, has unusually low contents of REE and HFSE. Most of the deep-level granites appear to represent cumulates with variable amounts of trapped liquid and of minor phases, resulting from fractional crystallization of a granitic parent. Such parental granitic magmas can be produced by batch melting of Archean tonalite at middle to lower crustal depths. The Sankari granite requires a tonalitic source depleted in REE and HFSE. Archean tonalites and tonalitic charnockites exhibit original igneous geochemical signatures and their average composition does not show a significant Eu anomaly. Hence, they cannot represent the positive Eu-anomaly complement to the negative Eu-anomaly, high-level granites. Our results suggest that Archean deep-level granites may represent this complement. Such granite may form in waterrich zones in the middle or lower crust and be produced in response to dehydration of the lower crust by a rising CO2-rich fluid phase.  相似文献   

3.
207Pb/204Pb versus 206Pb/204Pb model ages using Shonkin Sag data and published analyses for magmas of the Cenozoic Wyoming-Montana alkaline province (WYMAP) provide evidence of an Archean age for the subcontinental lithospheric mantle (SLM) associated with the Wyoming craton. The SLM imprint on magmas is expressed as Ba, Ta, Nb and Ti "anomalies" which correlate with radiogenic isotopic data, and it resembles a subduction imprint on Cenozoic south-western USA basalts (SWUSAB). However the latter give Proterozoic Pb isotope model ages. Although the Archean and Proterozic model ages may represent mixing lines, the fact that they resemble the ages for continental crust cut by WYMAP and SWUSAB respectively indicates that the age of the underlying SLM helped control the "isochron" slopes and inferred "ages". Lower 143Nd/144Nd and 206Pb/204Pb but comparable 87Sr/86Sr for WYMAP suggest that SLM associated with Archean cratons has lower Sm/Nd, U/Pb and Rb/Sr ratios than SLM associated with SWUSAB Proterozic terranes, regardless of when the subduction imprint or imprints developed. WYMAP magmas have high Pb/Zr ratios indicating that Archean SLM, like Archean continental crust, is enriched in Pb compared to Proterozoic SLM. If the enrichment was Archean, it implies that higher Archean heat flow enhanced Pb transfer from the subducting slab to overlying lithospheric mantle and crust. A subducted sediment imprint on the SLM is also consistent with high i18O values for the Shonkin Sag. Low TiO2 in WYMAP may reflect a residual mantle TiO2 phase. If so, the Nb "missing" from crustal and oceanic mantle reservoirs may reside in rutile of Archean SLM. Isotopic similarities between WYMAP and EM1 oceanic island basalts may reflect the presence of delaminated, Archean SLM in the oceanic mantle, although low Pb/Zr ratios and a lack of Ti, Nb and Ta anomalies in oceanic island basalts deserve further investigation.  相似文献   

4.
Massive mafic sheets were recently recognized intruding the Neoproterozoic strata in Fuyang area, eastern Jiangnan orogen. Geochronological, geochemical, and isotopic studies were carried out to understand their mantle source, crust–mantle interaction, and tectonic setting. LA-ICP-MS U-Pb zircon data indicate that the sheets were generated at 808 ± 7 Ma. The mafic sheets consist of two groups: high Ti and low Ti. They are enriched in light rare earth elements (LREE; 3.3–5.3 ppm) and show negligible Eu anomalies (δEu = 0.77–1.12). They also have strong large-ion lithophile element (LILE; Sr, K, Rb, Ba) enrichment, moderately strong high-field-strength element (HFSE) enrichment (except for Nb-Ta depletion), and positive εNd(t) (5.1–9.1). Geochemical and isotopic data indicate that the mafic sheets were generated from a depleted asthenospheric mantle source. The high-Ti mafic sheets have higher HFSE contents and less Nb-Ta depletion than the low Ti series, indicating a lower degree of partial melting and crustal contamination. The mafic sheets grew in a within-plate setting, concurrent with the ~820–750 Ma rifting events in the eastern Jiangnan orogen. They are likely related to the breakup of the Rodinia supercontinent.  相似文献   

5.
广西涠洲岛晚新生代玄武岩地幔源区及岩浆成因   总被引:1,自引:0,他引:1  
杨文健  于红梅  赵波  陈正全  白翔 《岩石学报》2020,36(7):2092-2110

涠洲岛作为我国最年轻的第四纪火山岩岛,其火山活动表现出多期、多旋回和多喷发中心的特征,但其地幔源区特征和岩浆成因依然存在争议。本文对涠洲岛玄武岩开展了详细的矿物学和全岩主、微量元素及Sr-Nd-Pb同位素研究,以揭示其地幔源区特征和岩浆成因。涠洲岛玄武岩主要为碱性玄武岩,在岩浆上升过程,几乎未受到地壳物质的混染,经历了橄榄石和单斜辉石的分离结晶作用。轻稀土(LREE)富集、重稀土(HREE)亏损,轻、重稀土强烈分馏((La/Yb)N=14.42~28.64),Nb、Ta明显正异常,显示出与洋岛玄武岩(OIB)相似的微量元素和Sr-Nd-Pb同位素特征。Sr-Nd-Pb同位素比值变化较均一,且呈现出亏损地幔端元(DM)与富集地幔端元(EM2)的二元混合趋势。其中,EM2端元可能源于海南地幔柱。Sr/Sr*(1.21~2.36)和Eu/Eu*(1.01~1.11)正异常,指示源区存在再循环辉长岩洋壳组分。结合已有的地震层析成像结果和岩石地球化学数据,得出南海及周缘地区的晚新生代玄武岩的形成受控于海南地幔柱。伴随着海南地幔柱的上升,再循环的辉长岩洋壳经部分熔融与地幔橄榄岩反应生成石榴石辉石岩(贫硅辉石岩),石榴石辉石岩和未反应的地幔橄榄岩混合部分熔融形成涠洲岛玄武岩。

  相似文献   

6.
鲁西中、新生代镁铁质岩浆作用与地幔化学演化   总被引:13,自引:0,他引:13  
镁铁质火成岩作为分布最为广泛的典型幔源岩石, 已成为探索地幔化学性状及示踪岩石圈深部过程的主要研究对象.通过对典型样品元素-同位素组成的系统测定, 并结合前人已有资料, 综合研究了鲁西中生代和新生代镁铁质岩石的地质与地球化学特征.研究结果表明, 中生代镁铁质火成岩总体具有富轻稀土和大离子亲石元素、贫高场强元素、ISr值变化范围大(0.70396~0.71247)、εNd (t) 值显著偏低(-9.20~-21.21) 的地球化学特征, 但该区南部和北部的中生代镁铁质岩石在元素-同位素组成上仍存在一定差别, 主要表现在南部较之北部镁铁质岩石具有更高的稀土总量(ΣREE为325.52×10-6~555.75×10-6)和轻、重稀土比值(LREE/HREE=17.75~25.97), 以及更高的LILE/HFSE比值(如La/Nb=6.37~13.85, Th/Nb=0.52~1.53).南部镁铁质岩石较之北部镁铁质岩石也更富放射成因锶, ISr值分别为0.70844~0.71247和0.70396~0.70598.元素-同位素综合示踪指示鲁西中生代地幔总体具有因岩石圈大规模拆沉作用形成的EMⅠ型富集地幔特征, 但其南部叠加了因深俯冲而进入地幔的扬子陆壳的影响, 因而表现出EMⅠ和EMⅡ组分混合的富集地幔特征.新生代玄武岩具有类似于大洋玄武岩的地球化学特征, 其源区应为亏损的软流圈地幔, 但在部分熔融形成岩浆之前遭受了近期的交代作用.自中生代至新生代, 华北克拉通地幔具有由富集向亏损演变的趋势, 这一化学性状的演变最可能是中生代以来岩石圈大规模拆沉作用, 导致软流圈地幔上涌并对原有岩石圈地幔再改造所致.   相似文献   

7.
山东蒙阴科马提岩具有典型的鬣刺结构,高镁低钛,铝不亏损,具有正的Rb、Ba、Sr、U异常,轻稀土元素亏损,重稀土元素平坦,稀土元素总量很低,高场强元素与稀土元素发生分异,Nb/Nb^*〉1,与加拿大蒙罗镇科马提岩地球化学特征和同位素特征相似。研究表明,蒙阴科马提岩可能起源于长期亏损的地幔源区,岩浆不可能来源于以橄榄石、辉石和石榴石(或者majorite)为主要矿物相的地幔源区。最新Sm-Nd同位素研究显示,蒙阴科马提岩样品的εNd值为-0.4~+3.6,新鲜样品一般为+3.3,也证实了科马提岩来自长期亏损的地幔源区,并且地幔柱在上升过程中受到地壳混染程度很小,推测研究区科马提岩的喷出可能是新太古代大陆增生事件的重要组成部分。  相似文献   

8.
长江源区新生代火山岩的系列及成因   总被引:2,自引:0,他引:2  
长江源区的新生代火山岩系包括高钾钙碱性系列和钾玄岩系列.高钾钙碱性火山岩形成于始新世, 钾玄岩系列火山岩形成于中、上新世.总体而言, 该区火山岩富碱高钾, 富集大离子亲石元素, 稀土元素含量高且轻稀土相对富集.相对而言, 高钾钙碱性火山岩富集SiO2、Al2O3, 无负Eu异常, 属于壳源岩浆系列, 其原始岩浆由加厚陆壳的榴辉岩质下地壳经部分熔融产生.钾玄岩系列火山岩富集K2 O、TiO2、P2 O5、MgO、FeO, ∑REE、HFSE、ISr值均较高, 弱负Eu异常, 属于幔源岩浆系列, 其原始岩浆由EMⅡ型富集地幔的部分熔融生成.2个系列的火山岩均是大陆碰撞造山后期岩浆作用的产物.始新世以来, 随着该区由碰撞、挤压作用发展到出现走滑, 应力环境由挤压转变为张性, 导致依次喷发高钾钙碱性火山岩和钾玄岩系列火山岩.   相似文献   

9.
We present new geochemical analyses of minerals and whole rocks for a suite of mafic rocks from the crustal section of the Othris Ophiolite in central Greece. The mafic rocks form three chemically distinct groups. Group 1 is characterized by N-MORB-type basalt and basaltic andesite with Na- and Ti-rich clinopyroxenes. These rocks show mild LREE depletion and no HFSE anomalies, consistent with moderate degrees (~15%) of anhydrous partial melting of depleted mantle followed by 30–50% crystal fractionation. Group 2 is represented by E-MORB-type basalt with clinopyroxenes with higher Ti contents than Group 1 basalts. Group 2 basalts also have higher concentrations of incompatible trace elements with slightly lower HREE contents than Group 1 basalts. These chemical features can be explained by ~10% partial melting of an enriched mantle source. Group 3 includes high MgO cumulates with Na- and Ti-poor clinopyroxene, forsteritic olivine, and Cr-rich spinel. The cumulates show strong depletion of HFSE, low HREE contents, and LREE enrichments. These rocks may have formed by olivine accumulation from boninitic magmas. The petrogenesis of the N-MORB-type basalts and basaltic andesites is in excellent agreement with the melting conditions inferred from the MOR-type peridotites in Othris. The occurrence of both N- and E-MORB-type lavas suggests that the mantle generating the lavas of the Othris Ophiolite must have been heterogeneous on a comparatively fine scale. Furthermore, the inferred parental magmas of the SSZ-type cumulates are broadly complementary to the SSZ-type peridotites found in Othris. These results suggest that the crustal section may be genetically related to the mantle section. In the Othris Ophiolite mafic rocks recording magmatic processes characteristic both of mid-ocean ridges and subduction zones occur within close spatial association. These observations are consistent with the formation of the Othris Ophiolite in the upper plate of a newly created intra-oceanic subduction zone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.

西克尔新生代玄武岩中的二辉橄榄岩包体矿物主量元素、单斜辉石(Cpx)微量元素及Sr同位素被用来揭示塔里木西北缘岩石圈地幔经历的交代改造作用。依据岩相学和矿物化学特征,西克尔二辉橄榄岩可分为A、B、C三个组。A组二辉橄榄岩具有较高的橄榄石含量(57%~65%)和Mg#(>90),代表了较为古老且适度难熔的岩石圈地幔,其Cpx富集大离子亲石元素,具有较高的(La/Yb)N、低的Ti/Eu比值,指示碳酸盐交代。根据Cpx的Sr同位素及高场强元素(HFSE)的异常特征,A组又可以细分为两个亚组(A1和A2):A1亚组Cpx核部呈现高的87Sr/86Sr(0.70451~0.70485)和HFSE的强烈负异常,而A2亚组Cpx核部呈现低的87Sr/86Sr(0.70353~0.70389)和HFSE的轻微负异常,分别代表着俯冲沉积碳酸盐和软流圈来源碳酸盐交代作用。B组和C组二辉橄榄岩具有较低的橄榄石Mg#(< 90),代表了经受改造后饱满的岩石圈地幔。其中B组的Cpx具极低的Zr/Hf,以及与A1亚组相似的特征,可能与蚀变洋壳熔融所产生富CO2硅酸盐熔体交代有关;C组尖晶石高的TiO2含量和Cpx高的重稀土含量,指示明显高熔/岩比的熔体-橄榄岩反应印迹,Cpx勺型的轻稀土配分、较低的(La/Yb)N、高的Ti/Eu比值、及HFSE强烈亏损的特征,表明其后期经历小体积富水硅酸盐熔体渗透的影响。此外A组Cpx的海绵边和B、C组包体与寄主岩交界处Cpx的反应边呈现与核部不一致的成分特征,同时B、C组包体与寄主岩交界处的斜方辉石也呈现被替代的现象。这些指示了橄榄岩在被携带至地表前不久或在此过程中熔体渗透引发的Cpx不一致熔融及熔岩反应的改造过程。多期次的地幔交代作用指示塔里木西北缘岩石圈地幔所经历的复杂改造历史。

  相似文献   

11.
《International Geology Review》2012,54(14):1791-1805
Newly discovered basalts in the Dabure area (central Qiangtang block, northern Tibet) were subjected to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb zircon dating, geochemical analyses, and zircon Hf isotope analyses. Dating of magmatic zircons from three basalt samples indicates that the Dabure basalts formed during the late Ediacaran (~550 Ma). Xenocrystic zircons yield ages of 700–1150 Ma, providing evidence of the Cryogenian crust in the Tibet block. The Dabure basalts are alkaline, rich in Ti and Fe, and are strongly enriched in light rare earth elements without Eu anomalies. The basalts are geochemically similar to within-plate basalts but are relatively depleted in Nb and Ta. Although the analysed zircons show differences in their Hf isotope compositions, the geochemical data suggest that the Dabure basalts were derived from enriched mantle and that the source magmas were contaminated by the continental crust. The basalts may have erupted during rifting at ~550 Ma (from the dating of magmatic zircons), and may have been a product of the initial breakup of Gondwanaland.  相似文献   

12.
徐峥  郑永飞 《地球科学》2019,44(12):4135-4143
大陆玄武岩通常具有与洋岛玄武岩相似的地球化学成分,其中含有显著的壳源组分.对于洋岛玄武岩来说,虽然其中的壳源组分归咎于深俯冲大洋板片的再循环,但是对板片俯冲过程中的壳幔相互作用缺乏研究.对于大陆玄武岩来说,由于其形成与特定大洋板片在大陆边缘之下的俯冲有关,可以用来确定古大洋板片俯冲的地壳物质再循环.本文总结了我们对中国东部新生代玄武岩所进行的一系列地球化学研究,结果记录了古太平洋板片俯冲析出流体对地幔楔的化学交代作用.这些大陆玄武岩普遍具有与洋岛玄武岩类似的地球化学成分,在微量元素组成上表现为富集LILE和LREE、亏损HREE,但是不亏损HFSE的分布特点,在放射成因同位素组成上表现为亏损至弱富集的Sr-Nd同位素组成.在排除地壳混染效应之后,这些玄武岩的地球化学特征可以由其地幔源区中壳源组分的性质来解释.俯冲大洋地壳部分熔融产生的熔体提供了地幔源区中的壳源组分,其中包括洋壳镁铁质火成岩、海底沉积物和大陆下地壳三种组分.华北和华南新生代大陆玄武岩在Pb同位素组成上存在显著差异,反映它们地幔源区中的壳源组分有所区别.中国东部新生代玄武岩的地幔源区是古太平洋板片于中生代俯冲至亚欧大陆东部之下时,在>200 km的俯冲带深度发生壳幔相互作用的产物.在新生代期间,随着俯冲太平洋板片的回卷引起的中国东部大陆岩石圈拉张和软流圈地幔上涌,那些交代成因的地幔源区发生部分熔融,形成了现今所见的新生代玄武岩.   相似文献   

13.
The Roshtkhar area is located in the Khaf-Kashmar-Bardaskan volcano-plutonic belt to the northeastern Iran along the regional E–W trending Dorouneh Fault, northeastern of the Lut Block. There are several outcrops of subvolcanic rocks occurring mainly as dikes in the area, which intruded into Cenozoic intrusive rocks. We present U–Pb dating of zircons from a diabase dike and syenite rock using LA-ICP-MS that yielded an age of 1778 ± 10 Ma for the dike, indicating this Cenozoic dike has zircon xenocrysts inherited from deeper sources; and 38.0 ± 0.5 Ma, indicating an Late Eocene crystallization age for the syenite. Geochemically, the dikes typical of high-K calc-alkaline to shoshonitic magmas. Petrographic observations and major and trace element variations suggest that diabase melts underwent variable fractionation of clinopyroxene, olivine, and Fe-Ti oxides and minor crustal contamination during the differentiation process. Primitive mantle-normalized multi-element diagrams display enrichment in LILE, such as Rb, Ba, Th, U, and Sr compared to HFSE, as well as negative anomalies of Nb, Ta, P, and Ti, suggesting derivation from subduction-modified mantle. Chondrite-normalized REE plots show moderately LREE enriched patterns (<3.83 LaN/YbN <8.27), and no significant Eu anomalies. Geochemical modelling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of batch melting (~1–3%) of a phlogopite-spinel peridotite source to generate the mafic dikes. The geochemical signatures suggest that the Roshtkhar mafic dikes cannot be related directly to subduction and likely resulted from melting of upper mantle in an extensional setting where the heat flow was provided from deeper levels. These dikes presumably derived the zircon xenocrysts from the assimilation of upper crust of Gondwanian basement. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in NE Iran was triggered by heating due to asthenospheric upwelling in an extensional setting.  相似文献   

14.
The Liuyuan mafic and ultramafic rocks are exposed in Southern Beishan, which is along the southern branch of the Central Asian Orogenic Belt (CAOB). Zircon SHRIMP U–Pb dating showed that Liuyuan gabbros intruded during the early Permian (~ 270–295 Ma) coeval with the basalts and the ultramafic rocks were emplaced at about 250 Ma. The basalts are within–plate tholeiites with slight enrichment in light rare earth elements (LREE) relative to heavy rare earths (HREE) and small negative anomalies of Nb and Ta. Gabbros including olivine gabbros, olivine gabbronorites and troctolites are grouped into two: the cumulate gabbros are depleted in LREE and show small negative Nb and Ta anomalies but distinct positive Sr and Eu anomalies; non–cumulate gabbros resemble tholeiitic basalts. Lamprophyres and cumulate ultramafic rocks are characterized by large enrichment of LREE relative to HREE with depletion in Nb and Ta. The enriched Sr–Nd isotopic trend from DM towards the EM II end member component implies that the lithospheric mantle was progressively enriched with depth by the involvement of subducted crustal material due to the delamination of thickened mantle lithosphere after collision. The digestion of subducted crustal material into the mantle resulting in the metasomatized and enriched mantle is inferred to be an important process during crust–mantle interaction.  相似文献   

15.
Late Archean (2.57 Ga) diamond-bearing eclogite xenoliths from Udachnaya, Siberia, exhibit geochemical characteristics including variation in oxygen isotope values, and correlations of δ18O with major elements and radiogenic isotopes which can be explained by an origin as subducted oceanic crust. Trace element analyses of constituent garnet and clinopyroxene by Laser-ICPMS are used to reconstruct whole-rock trace element compositions, which indicate that the eclogites have very low high field strength element (HFSE) concentrations and Zr/Hf and Nb/Ta ratios most similar to modern island arcs or ultradepleted mantle. Although hydrothermal alteration on the Archean sea floor had enough geochemical effect to allow the recognition of its effects in the eclogites and thus diagnose them as former oceanic crust, it was not severe enough to erase many other geochemical features of the original igneous rocks, particularly the relatively immobile HFSEs. Correlations of the trace element patterns with oxygen isotopes show that some, generally Mg-richer, eclogites originated as lavas, whereas others have lower δ18O and higher Sr and Eu contents indicating an origin as plagioclase-bearing intrusive rocks formed in magma chambers within the ocean crust. Major and trace element correlations demonstrate that the eclogites are residues after partial melting during the subduction process, and that their present compositions were enriched in MgO by this process. The original lava compositions were picritic, but not komatiitic, whereas the intrusives had lower, basaltic MgO contents. The HFSE signature of the eclogites may indicate that ocean floor basalts of the time were relatively close to island arcs and recycled material, which would be consistent with a larger number of smaller oceanic plates. Their composition appears to indicate that komatiitic ocean crust compositions were restricted to the early Archean which is not known to be represented among the eclogite xenolith population.  相似文献   

16.
喀喇昆仑地区中侏罗统龙山组灰岩中夹层状基性火山岩,岩性主要为块状玄武岩、杏仁状玄武岩和枕状玄武岩。通过LA-ICP-MS锆石U-Pb定年获得加权平均年龄为174.4Ma±2.7Ma,属中侏罗世早期,该年龄与龙山组灰岩中获取的化石时代一致。玄武岩具有较低的w(SiO2)(42.54%~46.4%)和w(TiO2)(0.8%~1.07%),较高的w(Al2O3)(13.11~16.86%),w(CaO)(8.66~13.4%)及较高的Mg#(52.6~66)。岩石稀土元素总量较低(ΣREE=38.4×10-6~49.7×10-6),轻、重稀土元素相对分馏不明显(LREE/HREE=1.85~2.34),轻稀土元素略富集,表现出弱的正铕异常(δEu=1.29~1.7),整体具有与富集型洋脊玄武岩(E-MORB)相似的特征。微量元素蛛网图中岩石相对富集大离子亲石元素(Rb,Ba,K,Sr)及Pb正异常明显,相对亏损高场强元素(Th,U,Nb,Ti)。微量元素地球化学特征表明,玄武岩源于富集地幔,为尖晶石二辉橄榄岩部分熔融的产物,且上升过程中受一定程度的地壳混染。综合野外地质特征和地球化学特征认为,龙山组玄武岩形成于具有陆壳基底的初始洋盆环境。  相似文献   

17.
A number of Paleoproterozoic mafic dykes are reported to intrude volcano-sedimentary sequences of the Mahakoshal supracrustal belt. They are medium to coarse-grained and mostly trend in ENE-WSW to E-W. Petrographically they are metadolerite and metabasite. Geochemical compositions classify them as sub-alkaline basalts to andesites with high-iron tholeiitic nature. Both groups, i.e. metabasites and metadolerites, show distinct geochemical characteristics; high-field strength elements are relatively higher in metadolerites than metabasites. This suggests their derivation from different mantle melts. Chemistry does not support any possibility of crustal contamination. Trace element modeling advocates that metabasite dykes are derived from a melt originated through ∼20% melting of a depleted mantle source, whereas metadolerite dykes are probably derived from a tholeiitic magma generated through <10% melting of a enriched mantle source. Chemistry also reveals that the studied samples are derived from deep mantle sources. HFSE based discrimination diagrams suggest that metabasite dykes are emplaced in tectonic environment similar to the N-type mid-oceanic ridge basalts (N-MORB) and the metadolerite dykes exhibit tectonic setting observed for the within-plate basalts. These inferences show agreement with the available tectonic model presented for the Mahakoshal supracrustal belt. The Chitrangi region experienced N-MORB type mafic magmatism around 2.5 Ga (metabasite dykes) and within-plate mafic magmatism around 1.5–1.8 Ga (metadolerite dykes and probably other alkaline and carbonatite magmatic rocks).  相似文献   

18.
The Re-Os isotopic systematics of two ca. 2.7-Ga komatiite flows from Belingwe, Zimbabwe are examined. Rhenium and Os concentrations in these rocks are similar to concentrations in other Archean, Proterozoic, and Phanerozoic komatiites. Despite the excellent preservation of primary magmatic minerals, the Re-Os systematics of whole-rock samples of the komatiites show open-system behavior. Consistent model ages for several whole-rock samples suggest a disturbance to the system during the Proterozoic. Despite the open-system behavior in the whole rocks, Re-Os systematics for concentrates of primary magmatic olivine and spinel indicate generally closed-system behavior since the magmatic event that produced the rocks. Regression of the data for the mineral concentrates yields an age of 2721 ± 21 Ga, which is consistent with Pb-Pb and Sm-Nd ages that have been previously reported for the komatiites (Chauvel et al., 1993), and an initial 187Os/188Os ratio of 0.11140 ± 84 (γOs = +2.8 ± 0.8).The 2 to 3% enrichment in 187Os/188Os ratio of the mantle source of the komatiites, relative to the chondritic composition of the contemporaneous convecting upper mantle, most likely reflects either the incorporation of substantially older (≥ 4.2 Ga), Re-rich recycled mafic crust into the mantle source of the komatiites or the contribution of suprachondritic Os to the source from the putative 187Os-enriched outer core. The former interpretation would indicate the Hadean formation and recycling of mafic crust. The latter interpretation would require early formation of a substantial inner core followed by upwelling of a mantle plume from the core-mantle boundary, at least as far back as the Late Archean. Either interpretation requires large-scale mantle convection during the first half of Earth history.  相似文献   

19.
Mafic dikes of late Proterozoic age which cut Grenvillian crust in the northeastern Adirondack Mountains are mostly mildly alkaline basalts except for a few tholeiitic examples. All dikes are high in Ti, P, K, Zr, Y, and LREE, and plot in within-plate fields on tectonic discriminant diagrams. The dikes are similar in composition to Hudson Highland dikes in southern New York and New Jersey and to the Bakersville dike swarm in the southern Appalachians. They differ from the Grenville dike swarm in Ontario and Quebec in being alkaline and having higher Ti and P contents. Mesozoic alkaline dikes in the same geographic area as the Proterozoic ones are strongly enriched in Ba, K, Rb and LREE, and approach lamprophyre in composition. The Proterozoic dikes have low La/Nb and La/Ta ratios, suggesting that subduction-modified mantle lithosphere was not substantially involved in their genesis. This contrasts with certain Mesozoic tholeiitic dikes, associated with the opening of the Atlantic, which show sharp negative Nb or Ta anomalies relative to La indicating they were derived from subduction-modified lithospheric mantle. The trace element chemistry suggests that the source for the Proterozoic dikes was trace element-enriched asthenosphere (OIB-like source), as postulated for certain basalts erupted in the East African Rift system, and in parts of the Basin and Range Province of the southwestern United States of America. Finally, the Proterozoic dikes are chemically similar to rift volcanics from the western Vermont Appalachians, and thus they are thought to represent magmatism associated with extension of the Grenvillian crust prior to opening of the Iapetus ocean.  相似文献   

20.
湘东南中生代花岗闪长质小岩体的岩石地球化学特征   总被引:58,自引:15,他引:58  
湘东南花岗闪长质岩石以高K2O/Na2O,K2O+Na2O>6.0%为特征,属高钾钙碱性系列岩石,其形成主要受部分熔融作用制约;岩石稀土元素富集,铕负异常不明显,δEu=0.71~0.89;富集大离子亲石元素,Nb-Ta亏损,P、Ti或亏损或不亏损,具岛弧型岩浆作用微量元素分配模式,属板内钾质岩石,源区可能存在早期俯冲组分改造的岩石圈富集地幔组分,或是源于软流圈的岩浆与中下地壳混合作用的产物;其形成与该带中生代早期岩石圈的伸展-减薄作用有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号