首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Design analysis of a truss pontoon semi-submersible concept in deep water   总被引:3,自引:0,他引:3  
Truss pontoon semi-submersible (TPS) is a new offshore structure concept in industry, where a truss spar is used to create the added mass by the heave plates. In the present paper, the effect of the heave plates on the vertical motion of the floating structure is demonstrated. A TPS is analyzed by utilizing the linear diffraction theory as well as the linear part of the Morison equation. The close agreement of the analysis results with the experimental results suggests that the simplified Morison equation can be used for the present analysis without sacrificing the quality of the results. However, good engineering judgment is required for estimating the values of the hydrodynamic coefficients as well as the amount of damping introduced in the structure. It is also found that the heave plates indeed introduce large added mass and considerable damping in the system motion in the vertical direction such that the resonant oscillation becomes less of a problem. This suggests that the TSP concept may have merits as a heave-controlled floating production structure in the deepwater development.  相似文献   

2.
随机波浪下Truss Spar平台垂荡运动时域分析   总被引:4,自引:2,他引:2  
研究Truss Spar平台在随机波浪下的垂荡运动特性。采用ITTC双参数谱,考虑绕射作用,数值计算了平台所受的随机波浪力。利用已有的水动力试验和数值模拟结果及Morison方程,估计了Truss Spar平台垂荡方向的附加质量和粘滞阻尼大小。考虑非线性阻尼和瞬时波面的影响,运用Runge-Kutta数值迭代算法,比较了不同随机波浪参数对平台运动响应的影响,特别是波浪特征周期接近垂荡固有周期时。结果表明,当波浪特征周期接近平台垂荡固有周期时,平台产生大幅垂荡运动,频域的运动分析结果比时域结果偏小。  相似文献   

3.
The paper presents the results of an experimental investigation of added masses and damping coefficients of a model of a fast monohull. A model of 4.5 m length between perpendiculars was constructed of fiber glass reinforced plastic (FRP) with four segments connected by a backbone. The backbone was instrumented with load cells at the positions of the cuts. This configuration, combined with load cells measuring the force exerted by the forced motion actuators, made it possible to obtain the hydrodynamic coefficients for each of the four hull segments.

The investigation focused on the vertical motions. Thus, the experimental program included forced harmonic heave and pitch motions in calm water (no incident waves). Subtracting inertial and restoring forces from total measured forces, one obtained the hydrodynamic component, which then resulted in the hydrodynamic coefficients. The effects of steady forward speed on the radiation forces were investigated by conducting model tests at four forward speeds. Finally, nonlinear effects were assessed by conducting model tests for three amplitudes of forced heave and forced pitch motions.  相似文献   


4.
The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper.Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh method and user defined functions of FLUENT.The added mass coefficient and the damping coefficient of heave plate with tapering condition and the chamfer condition are calculated.The results show that,in a certain range,the hydrodynamic performance of heave plate after being tapered is better.  相似文献   

5.
A study of nonlinear heave radiation of two-dimensional single and double hulls has been carried out in the time domain. The problem is analyzed by means of a fully nonlinear mathematical model, referred to as the mixed Eulerian–Lagrangian (MEL) model, which is based on an integral relation formulation coupled with time-integration of the nonlinear free-surface boundary conditions. The integral equation solver is based on a cubic-spline boundary-element scheme in which both potential and velocity continuity conditions can be enforced through the intersection points. The body undergoes periodic forced heave oscillation. By implementing effective wave-absorbing beaches at the two ends of the rectangular numerical tank, long-term steady-state force-histories could be achieved consistently in all computations.Results in terms of radiation forces for rectangular and triangular single- and twin-hull geometries are presented and discussed. Linear hydrodynamic forces in terms of added-mass and damping are validated for the rectangular hull. The Fourier-analyzed results reveal the extent of nonlinear (higher-order) components in the force-signals over different parameters which include the amplitudes of oscillation, hull-spacing for the twin-hulls and water depth.  相似文献   

6.
Spar平台垂荡板水动力特性强迫振动试验研究   总被引:1,自引:1,他引:0  
采用强迫振动试验的方法,对Spar平台不同振幅和不同振动频率下的附加质量系数和粘性阻尼系数进行了系统研究。分析研究了实心垂荡板和开孔垂荡板对Spar平台水动力特性的影响,并将Spar平台整体模型的试验结果与圆柱体和单独考虑垂荡板时的试验结果比较,结果表明垂荡板结构能有效提高Spar平台的附加质量系数和粘性阻尼系数,在KC=0.2~1.3时,开孔率为5%的开孔垂荡板Spar平台和实心垂荡板Spar平台相比,粘性阻尼有所提高但是附加质量减小。试验进一步研究了垂荡板间距对Spar平台水动力性能的影响,得到了水动力系数随垂荡板间距的变化情况,研究成果对实际工程中Spar平台的优化设计具有一定的指导意义。  相似文献   

7.
Hydrodynamic performance of solid and porous heave plates   总被引:3,自引:0,他引:3  
Heave plates have been widely utilized in floating offshore structures as they can provide additional damping and added mass to improve the hydrodynamic response of the system. This study investigates the hydrodynamic characteristics (added mass and damping) of oscillatory solid or porous disks using model scale experiments. All experiments were conducted via forced oscillation model tests using a planar motion mechanism (PMM). The hydrodynamic coefficients of the solid or porous disk obtained from the force measurements are analysed and presented. The sensitivities of the damping and added mass coefficients to both motion amplitude and the disk porosity are examined.  相似文献   

8.
A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model tests are carried out to consider the effects of exciting wave directions and types. Based on the experimental results, two hydrodynamic force models derived from Morison equation and Wake model are presented respectively. By use of hydrodynamic force models suitable for free spanning submarine pipelines under earthquakes, discretized equations of motion are obtained and finite element models are established to analyze dynamic response of free spanning submarine pipeline subjected to multi-support seismic excitations. The comparison of numerical results with experimental results shows that the improved Morison and Wake hydrodynamic force models could satisfactorily predict dynamic response on the free spanning submarine pipelines subjected to earthquakes.  相似文献   

9.
Truss Spar平台垂荡响应频域分析   总被引:10,自引:0,他引:10  
利用已有水动力试验和数值模拟结果及Morison方程,简化估计了Truss Spar平台垂荡方向水动力贡献,快速有效地预报了平台极端海况下的垂荡响应.在频域内分别采用数值迭代计算和粘滞阻尼线性化方法得到了平台在不同数量垂荡板配置下的垂荡响应幅值算子.在墨西哥湾、西非和中国南海等3种不同地区极端海况以及墨西哥湾工作状态海况下计算了平台的响应极值,分析发现平台波频垂荡响应对入射波浪周期非常敏感.采用JONSWAP波能谱得到了Truss Spar平台垂荡响应谱.通过比较和参数分析,验证了平台在设计上的合理性与实际海况下良好的垂荡运动性能.  相似文献   

10.
In this study, a practical model is proposed to predict cross-flow (CF) and in-line (IL) vortex-induced vibrations of a flexible riser in time domain. The hydrodynamic force as a function of non-dimensional amplitude and frequency is obtained from the forced vibration experimental data of a two-dimensional cylinder. An empirical nonlinear damping model is used to simulate the hydrodynamic damping outside the experiment's range. Coupling effect of CF and IL-VIV is taken into account by implanting a magnification model for the IL hydrodynamic force associated with CF amplitude, and by increasing the non-dimensional amplitude corresponding to the IL hydrodynamic coefficient in the second excitation region. The experimental models of flexible riser under the uniform and sheared current are simulated to validate the proposed model. The predicted displacement, curvatures, excited modes and fatigue damage show reasonable agreement with the measured data.  相似文献   

11.
An approach based on artificial neural network (ANN) is used to develop predictive relations between hydrodynamic inline force on a vertical cylinder and some effective parameters. The data used to calibrate and validate the ANN models are obtained from an experiment. Multilayer feed-forward neural networks that are trained with the back-propagation algorithm are constructed by use of three design parameters (i.e. wave surface height, horizontal and vertical velocities) as network inputs and the ultimate inline force as the only output. A sensitivity analysis is conducted on the ANN models to investigate the generalization ability (robustness) of the developed models, and predictions from the ANN models are compared to those obtained from Morison equation which is usually used to determine inline force as a computational method. With the existing data, it is found that least square method (LSM) gives less error in determining drag and inertia coefficients of Morison equation. With regard to the predicted results agreeing with calculations achieved from Morison equation that used LSM method, neural network has high efficiency considering its convenience, simplicity and promptitude. The outcome of this study can contribute to reducing the errors in predicting hydrodynamic inline force by use of ANN and to improve the reliability of that in comparison with the more practical state of Morison equation. Therefore, this method can be applied to relevant engineering projects with satisfactory results.  相似文献   

12.
A time-independent finite-difference method and a fifth-order Runge–Kutta–Felhberg scheme were used to analyze the dynamic responses of sea-wave-induced fully non-linear sloshing fluid in a floating tank. The interaction effect between the fully non-linear sloshing fluid and the floating tank associated with coupled surge, heave and pitch motions of the tank are analyzed for the first time in the present pilot study. For the analysis of fluid motion in the tank, the coordinate system is moving (translating and rotating) with tank motion. The time-dependent water surface of the sloshing fluid is transformed to a horizontal plane and the flow field is mapped on to a rectangular region. The Euler equations as well as the fully non-linear kinematic free surface condition were used in the analysis of the sloshing fluid. The strip theory for linearized harmonic sea-wave loading was adopted to evaluate the regular encounter wave force. In addition, the dynamic coefficients used in the dynamic equations of tank motion were also derived based on strip theory and a harmonic motion of the tank. The characteristics of free and forced tank motions with and without the sloshing effect are studied. By the damping effect, the response of free oscillation will damp out and that of forced oscillation will approach a steady state. Without sea-wave action, the contribution of the sloshing load would enlarge the angular response of tank motion as well as the rise of free surface and the sloshing effect will delay the damping effect on angular displacement. On the contrary, under sea-wave action, the sloshing effect will decrease the dynamic response of tank motion and rise of free surface. The interaction, sloshing and coupling effects are found to be significant and should be considered in the analysis and design of floating tanks.  相似文献   

13.
The paper deals with the non-linear dynamic response in the transverse direction of vertical marine risers or a tensioned cable legs subjected to parametric excitation at the top of the structure. The dynamic model contains both elastic and bending effects. The analytical approach reveals that the dynamic lateral response is governed by effects originated from the coupling of modes in transverse direction. The mathematical model is being treated numerically by retaining a sufficient number of transverse modes. Numerical results are given for specific case studies and refer both to the time histories of the lateral response for all modes of motion, and to the corresponding power spectral densities obtained through FFT. The numerical predictions are suitably plotted and discussed. The calculations concern both the undamped and the damped dynamic system. The damping in the system is a non-linear Morison type term, which describes the effect of the hydrodynamic drag. Both coupled and uncoupled equations are treated and points as well as regions of coupled and uncoupled stability and instability are defined. It is shown that the impacts originated from the coupling, evaluate new instabilities for the respective undamped system. The numerical results obtained through FFT of the time histories, provide qualitative conclusions for the features of the dynamic response for the modes of motions considered. Special attention has been paid to the effect of the hydrodynamic drag for the parametric excitation frequencies that guide the dynamic system to lie within a region of coupled instability.  相似文献   

14.
Nonlinear hydrodynamics of a twin rectangular hull under heave oscillation is analyzed using numerical methods. Two-dimensional nonlinear time-domain solutions to both inviscid and viscous problems are obtained and the results are compared with linear, inviscid frequency-domain results obtained in [26] to quantify nonlinear and viscous effects. Finite-difference methods based on boundary-fitted coordinates are used for solving the governing equations in the time domain [2]. A primitive-variables based projection method [6] is used for the viscous analysis and a mixed Eulerian–Lagrangian formulation [11] for inviscid analysis. The algorithms are validated and the order of accuracy determined by comparing the results obtained from the present algorithm with the experimental results of Vugt [22] for a heaving rectangle in the free surface. The present study on the twin-hull hydrodynamics shows that at large and non-resonant regular frequencies, and small amplitude of body oscillation, the fluid viscosity does not significantly affect the wave motion and the radiation forces. At low frequencies however the viscosity effect is found to be significant even for small amplitude of body oscillation. In particular, the hydrodynamic force obtained from the nonlinear viscous analysis is found to be closer to the linear inviscid force than the nonlinear inviscid force to the linear inviscid force, the reason for which is attributed to the wave dampening effect of viscosity. Since the wave lengths generated at smaller frequencies of oscillation are longer and therefore the waves could have a more significant effect on the dynamic pressure on the bottom of the hulls which contribute to the heave force, the correlation between the heave force and the wave elevation is found to be larger at smaller frequencies. Because of nonlinearity, the wave radiation and wave damping force remained nonzero even at and around the resonant frequencies – with the resonant frequencies as determined in [26] using linear potential flow theory. As to be expected, the nonlinear effect on the wave force is found to be significant at all frequencies for large amplitude of oscillation compared to the hull draft. The effect of viscosity on the force, by flow separation, is also found to be significant for large amplitude of body oscillation.  相似文献   

15.
Perforated plates, relevant for several marine applications, are experimentally and numerically investigated. The numerical investigations are performed using a presently developed Navier–Stokes solver. Several comparison and sensitivity studies are presented, in order to validate and verify the solver. Forced heave experiments are performed on two perforated plates with perforation ratios 19% and 28%. Amplitude-dependent added mass and damping coefficients are presented. Good agreement is obtained between the solver and the present experiments. Consistent with existing data, the results show that the hydrodynamic coefficients of perforated plates are highly amplitude dependent. The damping force is found to dominate over added mass force. The damping force dominance increases with increasing perforation ratio. It is highlighted that plate-end flow separation has an important effect on the damping coefficient. The developed numerical solver is two-dimensional, but is found to yield reasonable estimates of hydrodynamic force coefficients when compared with a previous three-dimensional experimental investigation. This could indicate that three-dimensional effects are not dominant for the hydrodynamic forces of perforated plates, and that a two-dimensional viscous flow solver could have relevance as a tool for estimating hydrodynamic forces on three-dimensional perforated structures.  相似文献   

16.
The main objective of this work is to investigate the effects of the damping level as well as different excitation forms on the overall prediction of the hydrodynamic parameters in the equations describing the coupled heave and pitch motions for an Underwater Robotic Vehicle (URV) sailing near the sea surface in random waves. The response of an underwater vehicle heaving and pitching in random waves having wide-band and narrow-band spectra are generated. The RDLRNNT technique is used to identify the hydrodynamic parameters in the equations. The technique is based on a combination of a multiple linear regression algorithm and a neural networks technique. The combination of the classical parametric identification techniques and the neural networks technique provides robust results and does not require a large amount of computer time. The identification technique would be particularly useful in identifying the parameters for both moderately and lightly damped motions under the action of unknown excitations effected by a realistic sea. It is shown that the developed technique produces reliable results for the parameters in the equations describing the coupled heave and pitch motions for a URV.  相似文献   

17.
In this paper two different models for the damping moment to introduce in the rolling equation of the ship are proposed. They contain two terms, respectively linear-quadratic and linear-cubic in the angular velocity, and furthermore they foresee a non-linear term representing the dependence of the damping from the heeling angle. These models constitute a generalization of all the models up to now used in the naval literature.With the Bogoliubov-Krilov asymptotic method approximate relations, describing the decay curve of the free oscillations and the maximum roll amplitude in synchronism condition, are obtained. The analysis shows that the choice of the more realistic damping model cannot be based on the simple verification of a good fitting of the free oscillation decay curves. It is necessary to examine also the behaviour of the forced oscillations in synchronism.Finally, a plan of experiments which allows the determination of separate values for the different non-linear damping coefficients is proposed.  相似文献   

18.
A numerical model was used to analyze the motion response and mooring tension of a submerged fish reef system. The system included a net attached to a rigid structure suspended up from the bottom with a single, high tension mooring by fixed flotation. The analysis was performed by using a Morison equation type finite element model configured with truss elements. Input forcing parameters into the model consisted of both regular and irregular waves, with and without a steady current. Heave, surge and pitch dynamic calculations of the reef structure were made. Tension response results of the attached mooring line were also computed. Results were analyzed in both the time and frequency domain in which appropriate, linear transfer functions were calculated. The influence of the current was more evident in the tension and heave motion response data. This is most likely the result of the large buoyancy characteristics of the reef structure and the length of the mooring cable. Maximum mooring component tension was found to be 13.9 kN and occurred when the reef was subjected to irregular waves with a co-linear current of 1.0 m/s velocity. The results also showed that the system had little damping (in heave) with damped natural periods of 2.8 s. This combination of system characteristics promotes a possible resonating situation in typical open sea conditions with similar wave periods.  相似文献   

19.
A partly non-linear time-domain numerical model is used for the prediction of parametric roll resonance in regular waves. The ship is assumed to be a system with four degrees of freedom, namely, sway, heave, roll and pitch. The non-linear incident wave and hydrostatic restoring forces/moments are evaluated considering the instantaneous wetted surface whereas the hydrodynamic forces and moments, including diffraction, are expressed in terms of convolution integrals based on the mean wetted surface. The model also accounts for non-potential roll damping expressed in an equivalent linearised form. Finally, the coupled equations of motion are solved in the time-domain referenced to a body fixed axis system.This method is applied to a range of hull forms, a post-Panamax C11 class containership, a transom stern Trawler and the ITTC-A1 containership, all travelling in regular waves. Obtained results are validated by comparison with numerical/experimental data available in the literature. A thorough investigation into the influence of the inclusion of sway motion is conducted. In addition, for the ITTC-A1 containership, an investigation is carried out into the influence of tuning the numerical model by modifying the numerical roll added inertia to match that obtained from roll decay curves.  相似文献   

20.
This study investigates the dynamic response of a Triangular Configuration Tension Leg Platform (TLP) under random sea wave loads. The random wave has been generated synthetically using the Monte-Carlo simulation with the Peirson–Moskowitz (P–M) spectrum. Diffraction effects and second-order wave forces have not been considered. The evaluation of hydrodynamic forces is carried out using the modified Morison equation with water particle kinematics evaluated using Airy's linear wave theory. Wave forces are taken to be acting in the surge degree-of-freedom. The effect of coupling of various structural degrees-of-freedom (surge, sway, heave, roll, pitch and yaw) on the dynamic response of the TLP under random wave loads is studied. Parametric studies for random waves with different Hs and Tz under the presence of current have also been carried out. For the orientation of the TLP, surge, heave and pitch degrees-of-freedom responses are influenced significantly. The surge power spectral density function (PSDF) indicates that the mean square response is affected by the amplification at the natural frequency of the surge degree-of-freedom and also at the peak frequency of the wave loading. The PSDF of the heave response shows higher peak values near the surge frequency and near the peak frequency of the wave loading. Surge response, therefore, influences heave response to the maximum. Variable submergence seems to be a major source of nonlinearity and significantly enhances the responses in surge, heave and pitch degrees-of-freedom. In the presence of current, the response behaviour of the TLP is altered significantly introducing a non-zero mean response in all degrees-of-freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号