首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A large spatial variability in sediment yield was observed from small streams in the Ecuadorian Andes. The objective of this study was to analyze the environmental factors controlling these variations in sediment yield in the Paute basin, Ecuador. Sediment yield data were calculated based on sediment volumes accumulated behind checkdams for 37 small catchments. Mean annual specific sediment yield (SSY) shows a large spatial variability and ranges between 26 and 15,100 Mg km− 2 year− 1. Mean vegetation cover (C, fraction) in the catchment, i.e. the plant cover at or near the surface, exerts a first order control on sediment yield. The fractional vegetation cover alone explains 57% of the observed variance in ln(SSY). The negative exponential relation (SSY = a × eb C) which was found between vegetation cover and sediment yield at the catchment scale (103–109 m2), is very similar to the equations derived from splash, interrill and rill erosion experiments at the plot scale (1–103 m2). This affirms the general character of an exponential decrease of sediment yield with increasing vegetation cover at a wide range of spatial scales, provided the distribution of cover can be considered to be essentially random. Lithology also significantly affects the sediment yield, and explains an additional 23% of the observed variance in ln(SSY). Based on these two catchment parameters, a multiple regression model was built. This empirical regression model already explains more than 75% of the total variance in the mean annual sediment yield. These results highlight the large potential of revegetation programs for controlling sediment yield. They show that a slight increase in the overall fractional vegetation cover of degraded land is likely to have a large effect on sediment production and delivery. Moreover, they point to the importance of detailed surface vegetation data for predicting and modeling sediment production rates.  相似文献   

2.
The suitability of a south Pennine reservoir as an archive of recent industrial pollution (Pb deposition) and vegetation change was assessed by comparing the sediment record of Pb and pollen with a local blanket peat profile, and the modelled regional SO2 deposition since 1840. The pollen-based record of vegetation change from the reservoir sediments was obscured by high inputs of eroded peat from the surrounding catchment. Total fluxes of Pb from the catchment into the reservoir varied between 0.05 and 2.67 kg km−2 year−1 during a 7 year period of increased peat erosion (1976–1984). The presence of concentration peaks in the Pb profile of the blanket peat may have been caused by changes in sulphide or redox chemistry within the peat profile. Large variations in influxes of Pb to the reservoir occurred during periods of increased peat erosion, suggesting the record of aerial pollution deposition has been obscured by terrestrial inputs. Extensive areas of blanket peat in the south Pennines have been subject to denudation, suggesting reservoirs in the region and other areas of high erosion and sediment flux are unsuitable for producing accurate records of the aerial deposition of pollen rain and Pb pollution. The ecological implications of highly variable fluxes of heavy metal contaminants from extensively eroded blanket bogs to ecosystems downstream are poorly understood.  相似文献   

3.
Understanding and quantifying sediment load is important in catchments draining highly erodible materials that eventually contribute to siltation of downstream reservoirs. Within this context, the suspended sediment transport and its temporal dynamics have been studied in the River Isábena (445 km2, south-central Pyrenees, Ebro basin) by means of direct sampling and turbidity recording during a 3-year dry period. The average flood-suspended sediment concentration was 8 g l− 1, with maximum instantaneous values above 350 g l− 1. The high scatter between discharge and suspended sediment concentrations (up to five orders of magnitude) has not permitted the use of rating curve methods to estimate the total load. Interpolation techniques yielded a mean annual sediment load of 184,253 t y− 1 for the study period, with a specific yield of 414 t km− 2 y− 1. This value resembles those reported for small torrents in nearby mountainous environments and is the result of the high connectivity between the badland source areas and stream courses, a fact that maximises sediment conveyance through the catchment. Floods dominated the sediment transport and yield. However, sediment transport was more constant through time than that observed in Mediterranean counterparts; this can be attributed to the role of base flows that entrain fine sediment temporarily stored in the channel and force the river to carry high sediment concentrations (i.e., generally in the order of 0.5 g l− 1), even under minimum flow conditions.  相似文献   

4.
Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906–1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000–2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km− 2 yr− 1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage.  相似文献   

5.
This study attempts to quantify the amount of fine-grained (ca. < 150 μm) sediment stored on the floodplains and on the channel bed of the non-tidal sections of the main channels in the catchment of the River Ouse (3315 km2) and of one of its tributaries, the River Waarfe (818 km2), in Yorkshire, UK. Caesium-137 analyses of floodplain sediment cores were used to quantify the amount of Iloodplain deposition as a result of overbank flooding during the last ca. 40 years. A combination of bulk and sectioned cores were collected along transects perpendicular to the channel at 26 sites throughout the study basins. In general, rates of overbank sedimentation decrease with distance from the channel. The average values for individual transects range between 0.010 and 0.554 g cm−2 year−1. Floodplain storage along the main channels of the Ouse and Wharfe basins accounts for 60645 and 10325 t year−1, respectively, and represents a net loss from the system. The amount of fine-grained sediment stored on the channel bed was estimated by a survey undertaken in August 1996, during which the fine material deposited on the bed was resuspended and its mass estimated at 16 locations. The average values for the individual locations range between 0.017 and 0.924 g cm−2 and tend to increase downstream. The total channel bed storage at the time of sampling in 1996 was estimated to be 16076 and 1866 t for the Ouse and Wharfe basins, respectively. It is assumed that channel bed storage is seasonal and that no net loss to the system occurs at the annual timescale. Floodplain storage for the Ouse and Wharfe basins represents 39 and 49%, and channel bed storage equals 10 and 9%, respectively, of the annual suspended sediment load (1995–1996) delivered to the channel system. These results have important implications for the routing of fine-grained sediment and sediment-associated contaminants in drainage basins, and for the interpretation of downstream sediment yields in terms of upstream sediment mobilisation.  相似文献   

6.
Muddy floods, i.e. runoff from cultivated areas carrying large quantities of soil, are frequent and widespread in the European loess belt. They are mainly generated in dry zero-order valleys and are nowadays considered as the most likely process transferring material eroded from cultivated hillslopes during the Holocene to the flood plain. The huge costs of muddy flood damages justify the urgent installation of control measures. In the framework of the ‘Soil Erosion Decree’ of the Belgian Flemish region, a 12 ha-grassed waterway and three earthen dams have been installed between 2002–2004 in the thalweg of a 300-ha cultivated dry valley in the Belgian loess belt. The measures served their purpose by preventing any muddy flood in the downstream village, despite the occurrence of several extreme rainfall events (with a maximum return period of 150 years). The catchment has been intensively monitored from 2005–2007 and 39 runoff events were recorded in that period. Peak discharge (per ha) was reduced by 69% between the upstream and the downstream extremities of the grassed waterway (GWW). Furthermore, runoff was buffered for 5–12 h behind the dams, and the lag time at the outlet of the catchment was thereby increased by 75%. Reinfiltration was also observed within the waterway, runoff coefficients decreasing by a mean of 50% between both extremities of the GWW. Sediment discharge was also reduced by 93% between the GWW's inflow and the outlet. Before the installation of the control measures, specific sediment yield (SSY) of the catchment reached 3.5 t ha− 1 yr− 1 and an ephemeral gully was observed nearly each year in the catchment. Since the control measures have been installed, no (ephemeral) gully has developed and the SSY of the catchment dropped to a mean of 0.5 t ha− 1 yr− 1. Hence, sediment transfer from the cultivated dry valley to the alluvial plain should dramatically decrease. Total cost of the control measures that are built for a 20 year-period is very low (126 € ha− 1) compared to the mean damage cost associated with muddy floods in the study area (54 € ha− 1 yr− 1). Similar measures should therefore be installed to protect other flooded villages of the Belgian loess belt and comparable environments.  相似文献   

7.
Sequential aerial photography, sonar bathymetry, ground-penetrating radar (GPR), and sediment sampling and analysis provide the basis for calculating the volumetric and mass rate of progradation of the delta of Fitzsimmons Creek, a steep, high-energy, debris-flow-dominated channel draining about 100 km2 of the southern Coast Mountains of British Columbia. Fitzsimmons Creek is typical of small mountain rivers in the region. GPR imaging is used to define the pre-depositional morphology of the receiving basin, a technique that improves the accuracy of the volumetric survey. The 52-year record (1947–1999) of progradation yielded an average annual volumetric transport rate of 1.00±0.16×104 m3 year−1 for bed load, corresponding to a mass transport rate of 1.60±0.28×104 Mg year−1. Bed load yields are consistent with those obtained in hydrogeomorphically similar basins in the region and elsewhere. Decade-based annual rates, which vary from 0.64±0.11×104 to 2.85±0.38×104 Mg year−1, provide poor estimates of the 52-year average. Indeed, the 52-year record may also not be long enough to fully integrate the significant fluctuations in the sediment efflux from Fitzsimmons Creek. The methodology proposed in this paper can be transferred to other comparable mountain environments worldwide.  相似文献   

8.
Information on post-fire sediment and nutrient redistribution is required to underpin post-fire catchment management decisions. Fallout radionuclide budgets (210Pbxs, 137Cs and 7Be) were derived to quantify soil redistribution and sediment yield in forested terrain following a moderately severe wildfire in a small (89 ha) water supply catchment in SE Australia. Application of these techniques in burnt terrain requires careful consideration of the partitioning of radionuclides between organic and mineral soil components. Beryllium-7 and 210Pbxs were shown to be closely associated with ash, litter and soil organic matter whereas 137Cs was more closely associated with subsurface coarse mineral soil. Comparison of the three tracer budgets indicated that the dominant sediment source areas were ridgetops and steep valley sideslopes, from which burnt surface material was conveyed to the stream network via pre-existing gullies. Erosion was predominantly driven by sheetwash, enhanced by soil water repellency, and modified by bioturbation which both supplies subsurface sediment and provides sinks for erosive overland flow. Footslope and riparian zones were not important sediment source areas. The estimated event-based (wildfire and subsequent rainfall) sediment yield is 58 ± 25 t km− 2, based on fallout 7Be measurements. The upper estimate of total particulate phosphorus yield (0.70 kg ha− 1) is more than 10 times that at equivalent unburnt sites. This illustrates that, soon after fire, burnt eucalypt forest can produce nutrient loads similar to those of agricultural catchments. The tracer budgets indicate that wildfire is an important control on sediment and phosphorus inputs to the stream network over the decadal timeframe and the pulsed nature of this release is an important concern for water quality management.  相似文献   

9.
Over the past 150 years, major land use changes have occurred in the Stemple Creek Watershed in northern California that have caused erosion to move soils from the upland to the flood plain, stream channels, and the bay. The purpose of this study is to document the recent (1954 to present) sediment deposition patterns in the flood plain area adjacent to Stemple Creek using the 137Cesium technique. Sediment deposition ranged from 0.26 to 1.84 cm year−1 for the period from 1964 to 2002 with an average of 0.85±0.41 cm year−1. Sediment deposition rates were higher for the 1954 to 1964 period with a range of 0.31–3.50 cm year−1 and an average of 1.29±1.04 cm year−1. These data indicate that sediment deposition in the flood plain has decreased since the middle 1950s, probably related to reduction in row crop agriculture and an increase in pasturelands. This study shows that the flood plains in the Stemple Creek Watershed are a significant sink for the soils being eroded from the upland area. Given the significance of the flood plain for trapping eroded materials before they reach the stream channels or the bay, efforts need to be made to manage these flood plain areas to insure that they do not change and become a source rather than a sink for eroded materials as improved management practices on the upland areas reduce sediment input to the flood plain.  相似文献   

10.
An existing dataset of area-specific sediment yield (SSY) for 60 catchments in Spain that was retrieved from sediment deposition rates in reservoirs [Avendaño Salas, C., Sanz Montero, E., Rayán, C., Gómez Montaña, 1997. Sediment yield at Spanish reservoirs and its relationship with the drainage basin area. In: Proceedings of the 19th Symposium of Large Dams, Florence, 1997. ICOLD (International Committee on Large Dams), pp. 863–874] reveals that catchment area alone explains only 17% of the variability in SSY. In this study, an attempt to explain the remaining variability in SSY was made using a quantitative and a semiqualitative approach for 22 catchments. During a field survey, the 22 selected catchments were characterised by topography, vegetation cover, lithology, shape and the presence of gullies in the broad vicinity of the reservoir. This information was used to develop a factorial scoring index model that provides a fairly accurate and reliable prediction of SSY. A classical multiple regression model using climatic, topographic and land use properties derived from regional datasets could not explain as much variance as the qualitative index model, nor did it appear to be as reliable. The same conclusion could be drawn when using the CORINE soil erosion risk map of southern Europe. The low prediction capability of the multiple regression models and the CORINE soil erosion risk map could be attributed mainly to the fact that these methods do not incorporate gully erosion and that the land cover data are not a good representation of soil cover. Both variables have been shown to be of great importance during the field surveys. Future assessments of SSY could be quickly and efficiently made using the proposed factorial scoring index model. In comparison with other models, which demand more data, the index model offers an alternative prediction tool.  相似文献   

11.
To determine for how long a landslide affects sediment discharge, the sediment yields of 15 check-dam basins were compared with the time series of landslide distributions in a mountain basin in the Tanzawa region, central Japan. The distribution of sediment yield was quantitatively estimated from deposition in the sediment pools of check dams. The relationship between the landslide history and sediment discharge in the Nakagawa River basin was examined for an approximately 80-year period. Two major landslide events occurred during this period: the 1923 Kanto Earthquake and the 1972 disaster caused by heavy rainfall. The resulting trend in sediment discharge of the whole basin, estimated using reservoir sedimentation in the Miho Dam at its base, was nearly constant, with high sediment discharge (2897 m3 km− 2 yr− 1) in the intervening quarter-century, despite the recovery of vegetation on landslide areas in this period. Comparisons of the landslide distributions resulting from the two disasters, the sediment yields of check-dam basins, and the sediment discharge of the whole basin indicate that recent sediment discharge contains landslide debris that was originated by the Kanto Earthquake that occurred over 80 years ago. Thus, to understand high sediment discharge, it is essential to investigate not only the current basin condition and recent events, but also the landslide history of the basin for at least the previous 100 years.  相似文献   

12.
Using the USPED (Unit Stream Power Erosion Deposition) model, three land use scenarios were analysed for an Italian small catchment (15 km2) of high landscape value. The upper Orme stream catchment, located in the Chianti area, 30 km south of Florence, has a long historical agriculture record. Information on land use and soil conservation practices date back to 1821, hence offering an opportunity to model impacts of land use change on erosion and deposition. For this study, a procedure that takes into account soil conservation practices and potential sediment storage is proposed. The approach was to calculate and model the flow accumulation considering rural and logging roads, location of urban areas, drainage ditches, streams, gullies and permanent sediment sinks. This calculation attempts to assess the spatial variability, especially the impact of support practices (P factor). Weather data from 1980–2003 were taken into account to calculate the R factor. However, to consider the intense pluviometric conditions in terms of the erosivity factor, the 0.75th quantile was used, while the lowest erosivity was modelled using the 0.25th quantile. Results of the USPED model simulation show that in 1821 the mean annual net erosion for the watershed was 2.8 Mg ha− 1 y− 1; in 1954 it was 4.2 Mg ha− 1 y− 1; and in 2004 it was 5.3 Mg ha− 1 y− 1. Conservation practices can reduce erosion processes by ≥ 20 Mg ha− 1 y− 1 when the 1821 practices are introduced in the present management. On the other hand, if the support practices are not considered in the model, soil erosion risk is overestimated. Field observation for the present-day simulation confirmed that erosion and associated sediment deposition predicted by the model depend, as expected, on geomorphology and land use. The model shows limitations that are mainly due to the input data. A high resolution DEM is essential for the delineation of reliable topographic potential to predict erosion and deposition especially in vineyards.  相似文献   

13.
Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its ‘flashy’ regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall, creating a minimum of wet conditions in the catchment to activate hydrological pathways and deliver sediment to the drainage network. The BFI is also related to sediment delivery processes, as the loads are higher with lower BFI, corroborating the fact that most sediment movement is caused by stormflow and its related factors. Overall, suspended sediment yields were very low (i.e., < 1 t km− 2 yr− 1) at all measuring sites. Such values are the consequence of the limited sediment delivery attributable to soil conservation practices, low surface runoff coefficients and specific geomorphic features of groundwater-dominated rivers, such as low drainage density, low gradient, steep valley walls and flat valley floors.  相似文献   

14.
The Nanga Parbat Himalaya presents some of the greatest relief on Earth, yet sediment production and denudation rates have only been sporadically addressed. We utilized field measurements and computer models to estimate bank full discharge, sediment transport, and denudation rates for the Raikot and Buldar drainage basins (north slope of Nanga Parbat) and the upper reach of the Rupal drainage basin (south slope).The overall tasks of determining stream flow conditions in such a dynamic geomorphic setting is challenging. No gage data exist for these drainage basins, and the overall character of the drainage basins (high relief, steep flow gradients, and turbulent flow conditions) does not lend itself to either ready access or complete profiling.Cross-sectional profiles were surveyed through selected reaches of these drainage basins. These data were then incorporated into software (WinXSPRO) that aids in the characterization (stage, discharge, velocity, and shear stress) of high altitude, steep mountain stream conditions.Complete field measurements of channel depths were rarely possible (except at several bridges where the middle of the channel could actually be straddled and probed) and, when coupled with velocity measurements, provided discrete points of field-measured discharge calculations. These points were then used to calibrate WinXSPRO results for the same reach and provided a confidence level for computer-generated results.Flow calculations suggest that under near bank full conditions, the upper Raikot drainage basin produces discharges of 61 cm and moves about 11,000 tons day−1 (9980 tons day−1) of sediment through its channel. Bank full conditions on the upper portion of the Rupal drainage basin generate discharges of 84 cm and moves only about 3800 tons day−1 (3450 tons day−1) of sediment. Although the upper Rupal drainage basin moves more water, the lower slope of the drainage basin (0.03) generates a much smaller shear stress (461 Pa) than does the higher slope (0.12) of the upper Raikot drainage basin (1925 Pa).Dissolved and suspended sediment loads were measured from water/sediment samples collected throughout the day and night over a period of 10 days at the height of the summer melt season but proved to be a minor variable in transport flux. Channel bed loads were measured using a pebble count method of bank material and then used to generate ratings curves of bed loads relative to discharge volumes. When coupled with discharge data and basin area, mean annual sediment yield and denudation rates for Nanga Parbat are produced. Denudation rates calculated in this fashion range from 0.2 mm year−1 in the slower, more sluggish Rupal drainage basin to almost 6 mm year−1 in the steeper, faster flowing Raikot and Buldar drainage basins.  相似文献   

15.
The sediment flux generated by postglacial channel incision has been calculated for the 2150 km2, non-glacial, Waipaoa catchment located on the tectonically active Hikurangi Margin, eastern North Island, New Zealand. Sediment production both at a sub-catchment scale and for the Waipaoa catchment as a whole was calculated by first using the tensioned spline method within ARC MAP to create an approximation of the aggradational Waipaoa-1 surface (contemporaneous with the Last Glacial Maximum), and second using grid calculator functions in the GIS to subtract the modern day surface from the Waipaoa-1 surface. The Waipaoa-1 surface was mapped using stereo aerial photography, and global positioning technology fixed the position of individual terrace remnants in the landscape. The recent discovery of Kawakawa Tephra within Waipaoa-1 aggradation gravels in this catchment demonstrates that aggradation was coincidental with or began before the deposition of this 22 600 14C-year-old tephra and, using the stratigraphic relationship of Rerewhakaaitu Tephra, the end of aggradation is dated at ca 15 000 14C years (ca 18 000 cal. years BP). The construction of the Waipaoa-1 terrace is considered to be synchronous and broadly correlated with aggradation elsewhere in the North Island and northern South Island, indicating that aggradation ended at the same time over a wide area. Subsequent downcutting, a manifestation of base-level lowering following a switch to postglacial incision at the end of glacial-age aggradation, points to a significant Southern Hemisphere climatic warming occurring soon after ca 15 000 14C years (ca 18 000 cal. years BP) during the Older Dryas interval. Elevation differences between the Waipaoa-1 (c.15 ka) terrace and the level of maximum channel incision (i.e. before aggradation since the turn of the 20th century) suggest about 50% of the topographic relief within headwater reaches of the Waipaoa catchment has been formed in postglacial times. The postglacial sediment flux generated by channel incision from Waipaoa catchment is of the order of 9.5 km3, of which ~ 6.6 km3 is stored within the confines of the Poverty Bay floodplain. Thus, although the postglacial period represented a time of high terrigenous sediment generation and delivery, only ~ 30% of the sediment generated by channel incision from Waipaoa catchment probably reached the marine shelf and slope of the Hikurangi Margin during this time. The smaller adjacent Waimata catchment probably contributed an additional 2.6 km3 to the same depocentre to give a total postglacial sediment contribution to the shelf and beyond of ~ 5.5 km3. Sediment generated by postglacial channel incision represents only ~ 25% of the total sediment yield from this landscape with ~ 75% of the estimated volume of the postglacial storage offshore probably derived from hillslope erosion processes following base-level fall at times when sediment yield from these catchments exceeded storage.  相似文献   

16.
The paper presents the sediment budget of the Isábena basin, a highly dynamic 445-km2 catchment located in the Central Pyrenees that is patched by highly erodible areas (i.e., badlands). The budget for the period 2007-2009 is constructed following a methodology that allows the interpolation of intermittent measurements of suspended sediment concentrations and enables a subsequent calculation of sediment loads. Data allow specification of the contribution of each subbasin to the water and sediment yield in the catchment outlet. Mean annual sediment load was 235,000 t y− 1. Specific sediment yield reached 2000 t km− 2 y− 1, a value that indicates very high sedimentary activity, especially in the case of Villacarli and Lascuarre subcatchments, were most badlands are located. The specific sediment yield obtained for the entire Isábena is 527 t km− 2 y− 1, a high value for such a mesoscale basin. Results show that a small part of the area (i.e., 1%) controls most of the catchment's gross sediment contribution. Sediment delivery ratio (ratio between sediment input from primary sources and basin export) has been estimated at around 90%, while in-channel storage represents the 5% of the annual load on average. The high connectivity between sediment sources (i.e., badlands) and transfer paths (i.e., streamcourses) exacerbates the influence of the local sediment production on the catchment's sediment yield, a quite unusual fact for a basin of this scale.  相似文献   

17.
Jose Luis Antinao  John Gosse   《Geomorphology》2009,104(3-4):117-133
The distribution and age of large (> 0.1 km2) Pliocene to recent rockslides in the Chilean Cordillera Principal (32–34.5 S), the Southern Central Andes, has been analyzed to determine the rockslide triggering mechanisms and impact on regional landscape evolution. Most of the rockslides appear in the western Cordillera Principal and cluster along major geological structures. Variographic analyses show spatial correlation between rockslides, geological structures and shallow seismicity. A relative chronosequence was calibrated with existing 14C and 40Ar/39Ar dates and new cosmogenic nuclide exposure ages for selected rockslides. Rockslide-induced sediment yield was estimated with empirical relations for rockslide area distributions. Throughout the Quaternary, rockslides have delivered sediment to streams at rates equivalent to denudation rates of 0.10 ±0.06 mm a− 1, while estimates using short term (20 a) seismicity records are 0.3− 0.2+ 0.6 mm a− 1. The estimates of sediment transfer and the spatial distribution of rockslides reflect a landscape in which tectonic and geological controls on denudation are more significant than climate.  相似文献   

18.
In catchments adjacent to the Great Barrier Reef World Heritage Area in Queensland, Australia, there is a growing concern that sediments and nutrients being exported from the land are having a detrimental effect on coral reef communities. There is a need to determine the processes and rates of erosion from the major land use types, so that management intervention can be initiated to reduce sediment yields where required. This paper presents a sediment budget for Weany Creek, a 13.5 km2 grazed semi-arid sub-catchment of the Burdekin River catchment, Australia. A range of field methods was used to measure erosion from hillslopes, gullies and stream banks, as well as identify the amount of sediment being deposited and remobilised on the bed of gullies and the stream network. The data suggests that at least during drought conditions, the primary erosion source in this catchment is gully erosion. However, the largest source of sediment in the budget is actually associated with the remobilisation of in-channel sediment stores. Overall, the sediment budget is comprised of  81% coarse material and 19% fine sediment and an agreement between the fine sediment yield estimated in the sediment budget and the yield measured at the catchment outlet is within 10%. The total sediment yield estimated for this catchment is  4205 t yr− 1 and is much lower than expected for a catchment of this size. This may reflect the drought conditions during the measurement period; however, there is also the possibility that the primary erosion sources have been exhausted, and the rates of sediment loss may be much lower now than they may have been in the past. Nonetheless, the results show that stored sediment, which may have been deposited in the channel many decades ago, is an important contributor to end of catchment sediment yields and warrants further investigation.  相似文献   

19.
Field experiments were conducted in Nellis Dunes Recreational Area (Clark County, Nevada, USA) to investigate emission of dust produced by off-road driving. Experiments were carried out with three types of vehicles: 4-wheelers (quads), dirt bikes (motorcycles) and dune buggies, on 17 soil types characteristic for a desert environment. Tests were done at various driving speeds, and emissions were measured for a large number of grain size fractions. This paper reports the results for two size fractions of emissions: PM10 (particles < 10 μm) and PM60 (particles < 60 μm). The latter was considered in this study to be sufficiently representative of the total suspendable fraction (TSP). Off-road driving was found to be a significant source of dust. However, the amounts varied greatly with the type of soil and the characteristics of the top layer. Models predicting emission of dust by off-road driving should thus consider a number of soil parameters and not just one key parameter. Vehicle type and driving speed are additional parameters that affect emission. In general, 4-wheelers produce more dust than dune buggies, and dune buggies, more than dirt bikes. Higher speeds also result in higher emissions. Dust emitted by off-road driving is less coarse than the parent sediment on the road surface. Off-road driving thus results in a progressive coarsening of the top layer. Exceptions to this are silty surfaces with no, or almost no, vegetation. For such surfaces no substantial differences were observed between the grain size distribution of road dust and emitted dust. Typical emission values for off-road driving on dry desert soils are: for sandy areas, 30–40 g km− 1 (PM10) and 150–250 g km− 1 (TSP); for silty areas, 100–200 g km− 1 (PM10) and 600–2000 g km− 1 (TSP); for drainages, 30–40 g km− 1 (PM10) and 100–400 g km− 1 (TSP); and for mixed terrain, 60–100 g km− 1 (PM10) and 300–800 g km− 1 (TSP). These values are for the types of vehicles tested in this study and do not refer to cars or trucks, which produce significantly more dust.  相似文献   

20.
长江上游输沙尺度效应研究   总被引:15,自引:4,他引:11  
师长兴 《地理研究》2008,27(4):800-810
利用长江上游DEM、降雨、土地利用、土壤类型数据库,计算出通用土壤流失方程中代表影响侵蚀产沙的各因子,建立这些因子以及流域面积与长江上游268个水文站以上流域输沙模数回归关系,探讨上游侵蚀输沙的尺度效应。结果显示长江上游输沙模数与流域面积之间呈负幂函数单元回归关系,而且这一关系主要产生于降雨侵蚀力因子和土壤可蚀性因子随流域面积的变化。长江上游输沙模数随流域面积增大而降低主要发生在大约1×104~1.58×105km2之间。在考虑了影响侵蚀产沙因子对输沙模数的作用后,输沙模数与流域面积之间呈正幂函数相关,反映出上游输沙近源沉积的特征。分析还发现长江上游各主要支流输沙模数变化与流域尺度大小的关系和原因有明显不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号