首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. Mass balance estimations to characterize temporal and spatial variations in the frontal accretion, or underplating and subduction of sediments since the Late Miocene, were made using seismic and drill-hole data. At 200 km north of the triple junction, almost 80% of the sediment on the downgoing Nazca plate are subducted. Sediment subduction rate decreases towards the triple junction because of a low in sedimentation rates as the flank of the spreading ridge approaches the trench. At the triple junction, the forearc is almost completely destroyed by spreading ridge collision and subduction erosion. Less than 12% of the available sedimentary input is accreted. South of the triple junction, where the spreading ridge passed 6 Ma ago, a large fraction (>60%) of the sediment on the incoming Antarctic plate has been scraped off and was frontally accreted to the Chile forearc. Spreading ridge subduction leaves a distinctive geological fingerprint, and has a large impact on the mass balance of the subduction zone. However, the high rates of change in the process may make this fingerprint hard to detect in fossil convergent orogens. In the ridge collision zone the sediment supplied to the trench, and the amount of sediment subducted, show strong and distinctive variations on a 1- to 5-million-year time scale. On a 10-million-year time scale, sediment subduction to the Earth's mantle is reduced by spreading ridge collision, caused by the need of the overriding forearc to regain a low angle of taper by frontal accretion.  相似文献   

2.
Some allochthonous terranes form along active continental margins when slivers of forearc crust (or more extensive crust) are displaced along arc-parallel strike-slip faults. Such faults can be generated or reactivated in response to either oblique subduction or ridge collision (collision between an oceanic spreading ridge and the leading edge of the forearc). The mechanical and thermal effects of ridge collision are important factors in the origin crustal development of some forearc sliver terranes. Some of the effects of ridge collision are well illustrated in the South American forearc near the Chile triple junction (46° S) where the Chile Rise is colliding today. Impingement of the Chile Rise, in conjuction with oblique subduction, has caused an elongate forearc sliver terrane to move northward away from an extensional zone at the collision site. The terrane is bounded on the east by the arc-parallel Liquiñe-Ofqui fault system (LOF) which coincides roughly with the forearc-arc boundary, and on the south by the Golfo de Penas extensional basin. Fault fabrics, recent seismicity, and paleomagnetic results indicate a component of right-lateral strike-slip movement on the LOF. Neotectonic geomorphology and pre- and post-seismic vertical strain data from the 1960 Concepcíon earthquake indicate a west-down dip-slip component of movement. Three-dimensional finite element models of ridge collision in this region substantiate these shear strains and development of an arc-parallel fault at about 150–200 km from the trench.Development of the forearc crust during Miocene and younger collision also involved intrusion of silicic magmas and emplacement of the Pliocene(?) Taitao ophiolite within about 15 km of the trench. The ophiolite and the silicic magmas constitute anomalous additions to the forearc crust, and record tectonic events leading to the origin of the allochthonous terrane carrying them. Similar ophiolite/silicic plutonic associations may help unravel the origin of other allochthonous terranes.  相似文献   

3.
The Taitao ophiolite of southern Chile lies 10 km from the buried extension of the Peru-Chile trench, and less than 50 km from the present position of the Nazca/South America/Antarctica triple junction. Plio-Pleistocene radiometric and paleontologic ages indicate its formation during ridge subduction, and an ultramafic rock, gabbro, sheeted dike, volcanic and sedimentary rock psuedostratigraphy suggests formation by typical accretionary processes for oceanic lithosphere. Yet major and trace element data show that mafic dikes and volcanic units are transitional from MORB to IAT, and there are abundant silicic volcanic units of calc-alkaline character that have high LIL element and light REE concentrations relative to oceanic plagiogranites. Sr and Nd isotopic data are consistent with that of modern oceanic suites, even though having a greater internal variability. Silicic volcanic units show the more enriched Sr and depleted Nd isotopic ratios relative to dike and gabbro samples. In addition to chemical distinctions, paleobathymetric data support a shallow water origin for some of the upper volcanic units and, assuming local compensation, suggest crustal thicknesses of continental proportion. In the vicinity of the Taitao ophiolite, and extending some 40 km landward of the plate margin, are a series of silicic stocks, sills, and plutons that were intruded into the forearc at the time of ridge collision and ophiolite generation. These calc-alkaline I-type granitoids are light REE enriched and have Sr and Nd isotopic compositions similar to those of the main volcanic chain 200 km landward. Chemically, some of the silicic intrusions are indistinguishable from volcanic units of the ophiolite. In general, major, trace, REE, and isotopic variations of both the ophiolite and the distributed intrusions are atypical of simple fractionation trends for basaltic liquids. Intermediate to silicic units lie along mixing hyperbolae between Taitao gabbro and either forearc sediment or metamorphic basement on a Nd---Sr correlation diagram, and these two crustal components support, respectively, either a 10–25% or 5–10% assimilation. Shutdown of magmatism, and therefore probably partial melting as well, appears to occur within 40 km of the trench, roughly spanning the depth interval for the disappearance of the plagioclase-lherzolite stability field as the zone of mantle upwelling is overridden by an increasing thickness of continental lithosphere. A deeper and more landward absence of partial melt related to the subducted ridge is supported by the correlation of the shutoff and re-initiation of arc volcanism over the northern and southern trailing edges of the postulated subcontinental asthenospheric window. Here, as well as elsewhere in the circum-Pacific, the general restriction of magmatism related to ridge subduction to near-trench settings supports a shallow (0 to 15 km) shutoff mechanism for adiabatic decompressive melting and a rather abrupt return to single-phase (solid) convective rise of mantle into an evolving asthenospheric window.  相似文献   

4.
We estimated metamorphic conditions for the  6 Ma Taitao ophiolite, associated with the Chile triple junction. The metamorphic grade of the ophiolite, estimated from secondary matrix minerals, changes stratigraphically downwards from the zeolite facies, through the prehnite–actinolite facies, greenschist facies and the greenschist–amphibolite transition, to the amphibolite facies. The metamorphic facies series corresponds to the low-pressure type. The metamorphic zone boundaries are subparallel to the internal lithological boundaries of the ophiolite, indicating that the metamorphism was due to axial hydrothermal alteration at a mid-ocean ridge.

Mineral assemblages and the compositions of veins systematically change from quartz-dominated, through epidote-dominated, to prehnite-dominated with increasing depth. Temperatures estimated from the vein assemblages range from  230 °C in the volcanic unit to  380 °C at the bottom of the gabbro unit, systematically  200 °C lower than estimates from the adjoining matrix minerals. The late development of veins and the systematically lower temperatures suggest that the vein-forming alteration was due to off-axis hydrothermal alteration.

Comparison between the Taitao ophiolite with its mid-ocean ridge (MOR) affinity, and other ophiolites and MOR crusts, suggests that the Taitao ophiolite has many hydrothermal alteration features similar to those of MOR crusts. This is consistent with the tectonic history that the Taitao ophiolite was formed at the South Chile ridge system near the South American continent (Anma, R., Armstrong, R., Danhara, T., Orihashi, Y. and Iwano, H., 2006. Zircon sensitive high mass-resolution ion microprobe U–Pb and fission-track ages for gabbros and sheeted dykes of the Taitao ophiolite, Southern Chile, and their tectonic implications. The Island Arc, 15(1): 130–142).  相似文献   


5.
We have measured shear wave splitting at three temporary three-component short period stations that were deployed in southern Chile above the subducted Chile Rise spreading centre (Taitao Peninsula and environs). Subduction of the Chile Rise has been occurring beneath South America for at least the past 14 m.y. Previously published models of the ridge subduction posit the existence of ‘slab windows’, asthenosphere-filled gaps between subducted lithosphere segments of the spreading ridge, through which mantle might flow. Our preliminary results include two consistent fast polarization directions of splitting in the study region. Delay times between fast and slow split shear waves average around 1.0 s for all phases (ScS, PcS, SKS, and SKKS) that we measured. Fast-axis azimuths vary systematically among the three stations: near the coast, fast axes are parallel to the spreading ridge segments of the Chile Rise (approximately N-trending). This splitting fast-axis direction probably reflects either along-axis asthenospheric flow or results from the preferential attenuation effects of aligned pockets of melt at the subducted ridge segment. At one inland station above the slab window, we find two splitting fast-axis directions, one parallel to the subducted Chile Rise ridge segments, and a second trending NW–SE. We infer that upper mantle deformation in the vicinity of a well developed slab window is complicated and probably involves two superposed directions of upper mantle deformation. One of these directions (NW–SE) may indicate anomalous flow of asthenospheric mantle in the vicinity of the slab window gap.  相似文献   

6.
新疆西准噶尔地区是古生代经过俯冲-增生形成的复合造山带,该地区分布有多条蛇绿岩带,其中之一的西准噶尔达拉布特蛇绿岩被认为是最大的一条蛇绿岩带,可能代表了古亚洲洋壳的残余。本文的资料显示蛇绿岩带内的镁铁质岩呈现出N-MORB、E-MORB和似OIB的地球化学特征,通过对阿克巴斯套岩体中的浅色辉长岩LA-ICP-MS锆石年龄测定,获得达拉布特蛇绿岩E-MORB型镁铁质岩的年龄为302±1.7Ma。鉴于达拉布特蛇绿岩中E-MORB和似OIB型镁铁质岩成因的复杂性,结合前人研究成果,对辉长岩锆石U-Pb年龄所代表的意义存在两种可能性:(1)E-MORB型和似OIB型镁铁质岩可能是弧后盆地扩张后期的产物,代表蛇绿岩的年龄,其表明西准噶尔地区可能晚石炭纪还有洋盆存在;(2)E-MORB型镁铁质岩是蛇绿岩消亡阶段由于扩张脊和俯冲带碰撞作用而形成的弧前海山,形成时代晚于达拉布特主体蛇绿岩,但其成因与蛇绿岩的演化密切相关。本文侵向于第二种可能性,认为新疆北部晚石炭-早二叠可能仍存在活动陆缘,俯冲作用仍然存在,扩张脊俯冲形成的板片窗效应导致地幔楔、俯冲板片和沉积物等熔融促使基性岩浆向长英质酸性岩浆转变,从而引发了二叠纪大规模玄武质岩浆底侵,导致了该时期的构造-岩浆-成矿-造山作用的发生。  相似文献   

7.
The Tertiary Mineoka ophiolite occurs in a fault zone at the intersection of the Honshu and Izu forearcs in central Japan and displays structural evidence for three major phases of deformation: normal and oblique-slip faults and hydrothermal veins formed during the seafloor spreading evolution of the ophiolite at a ridge-transform fault intersection. These structures may represent repeated changes in differential stress and pore-fluid pressures during their formation. The second series of deformation is characterized by oblique thrust faults with Riedel shears and no significant mineral veining, and is interpreted to have resulted from transpressional dextral faulting during the obduction of the ophiolite through oblique convergence and tectonic accretion. This deformation occurred at the NW corner of a TTT-type (trench–trench–trench) triple junction in the NW Pacific rim before the middle Miocene. The third series of deformation of the ophiolite is marked by contractional and oblique shear zones, Riedel shears, and thrust faults that crosscut and offset earlier structures, and that give the Mineoka fault zone its lenticular (phacoidal) fabric at all scales. This deformation phase was associated with the establishment and the southward migration of the TTT Boso triple junction and with the kinematics of oblique subduction and forearc sliver fault development. The composite Mineoka ophiolite hence displays rocks and structures that evolved during its complex geodynamic history involving seafloor spreading, tectonic accretion, and triple junction evolution in the NW Pacific Rim.  相似文献   

8.
Zircon and apatite fission track (FT) thermochronology was applied to investigate the history of cooling and denudation of the Southern Andes between 41° and 42°15′S in relation to the late Cenozoic activity of the Liquiñe-Ofqui fault zone (LOFZ) and the northward migration of the Chile Triple Junction (CTJ). Fifty-six zircon and 51 apatite FT ages, plus 37 apatite confined track-length distributions were obtained mainly from plutonic rocks of the North Patagonian Batholith (NPB) in the main Andean Cordillera. Apatite FT ages and track lengths indicate a stage of rapid cooling at ∼5--3 Ma along both sides of the LOFZ, whereas older Miocene ages with monotonous cooling histories were obtained further away from the fault. Zircon FT ages range from Cretaceous to Pliocene, with marked differences observed along and across the LOFZ. Three different types of temperature-time histories characterise the post-magmatic cooling of the NPB in the region: deep intrusions with moderate and steady cooling rates, intrusions in the upper crust with very slow cooling rates following a stage of initial rapid cooling, and rapidly cooled and exhumed shallow intrusions, the latter with younger ages towards the fault zone. The most prominent denudation episode along the LOFZ is late Miocene to Pliocene, coeval with plate tectonic reconstructions for the arrival and subduction of the Chile Rise beneath the Taitao Peninsula.  相似文献   

9.
蛇绿岩就位机制及时限   总被引:3,自引:0,他引:3       下载免费PDF全文
蛇绿岩就位机制可以划分出4种:1)碰撞仰冲型:被动大陆边缘或岛弧与洋壳碰撞时,俯冲到一定深度的硅铝质物质在浮力作用下折返,并上驮相对完整的大洋岩石圈残片到达地表;2)增生底垫型:洋底、海沟沉积物及海底较高地形的上层物质从俯冲板块上刮削下来,持续底垫到上覆板块之下,使大洋岩石圈残片逐渐被动抬高;3)俯冲剥离型:断裂发育相...  相似文献   

10.
The Sagami trough is located at the particular plate margin where the Izu forearc is subducted underneath the Honshu forearc. At its southeastern end, the world's only known TTT-type triple junction (Boso triple junction) has developed. Several different kinds of basins occur in different segments along the Sagami trough and at the triple junction. The bathymetric, geologic, and geophysical data obtained during the Kaiko Project and from additional studies are summarized together with our onland studies. We suggest that the right-lateral oblique plate motion formed an eduction margin in the Sagami basin, while a normal subduction margin and an oblique subduction margin have been formed in the Middle Sagami trough basin. These tectonic phenomena resulted from the long-lasting compressional covergence between the Philippine Sea plate and Eurasian plate since the early or middle Miocene. The North basin on the northeasternmost margin of the Philippine Sea plate near the Boso triple junction has developed as a stretched basin due to the westward motion of the Philippine Sea plate with respect to the Eurasian plate.  相似文献   

11.
重点分析和总结了由显生宙增生复合体和造山带混杂岩重建的年轻造山带洋板块地层--太平洋洋板块地层,也简要介绍了东古印度洋(东新特提斯洋)和古亚洲洋洋板块地层的重建情况。通过对阿拉斯加南部中生代增生地体、俄罗斯远东和中国东北侏罗纪-早白垩世增生复合体、日本二叠纪-侏罗纪-白垩纪等不同时期的增生复合体、菲律宾侏罗纪增生复合体和美国加州海岸山脉中侏罗世-古新世弗朗西斯卡杂岩体等不同单元的岩石学特征、古生物地层学、年代地层学、因逆冲导致的构造叠置和混杂失序特征及演化阶段的分析,重建了太平洋洋板块地层。其中加州海岸山脉中侏罗世-古新世弗朗西斯卡杂岩体的研究比较深入,对该区俯冲带上叠蛇绿岩(大峡谷群弧前盆地蛇绿岩)和弗朗西斯卡北部马林海岬杂岩体(原岩为洋中脊玄武岩)进行了有效区分,不仅还原了太平洋板块的俯冲碰撞过程,还厘清了与之伴生的弧前盆地裂陷和扩张过程。另外,板块俯冲的滞留和幕式增生在活动时间较短的板块俯冲体系中可能不容易识别。  相似文献   

12.
The Aysén Region, southern Chile, is the area located at the southern end of the Nazca-South America subduction zone, to the east of the Chile Triple Junction. This region has historically presented low levels of seismicity mostly related to volcanism. Nonetheless, a seismic sequence occurred in 2007, related to the reactivation of the strike-slip Liquiñe-Ofqui Fault System (LOFS), confirmed that this region is not exempt from major seismic activity M ∼ 7. Here we present results from background local seismicity of two years (2004–2005) preceding the sequence of 2007. Event magnitudes range between 0.5 and 3.4 ML and hypocenters occur at shallow depths, mostly within the upper 10 km of crust, in the overriding South American plate. No events were detected in the area locus of the 2007 sequence, and the Wadati–Benioff (WB) plane is not observable given the lack of subduction inter-plate seismicity in the area. A third of the seismicity is related to Hudson volcano activity, and sparse crustal events can be spatially associated with the trace of the Liquiñe-Ofqui fault, showing the largest detected magnitudes, in particular at the place where the two main branches of the LOFS meet. Other minor sources of seismicity correspond to glacial calving in the terminal zones of glaciers and mining explosions.  相似文献   

13.
智利北部和阿根廷西北部的中新生代斑岩铜矿形成于古生代地体拼贴造山带背景。随着大西洋的张开,南美大陆向西漂移,中新生代期间,南美克拉通块体俯冲到古生代造山带之下形成加厚或双倍地壳。智利北部作为南美活动大陆边缘的组成部分,不断"吞食"向东俯冲的太平洋(纳斯卡)板块,斑岩铜矿成矿作用发生在俯冲板块断离后导致的大规模岩浆活动,并沿再活化岩石圈不连续(先存的古生代拼接带、区域断裂)反复就位,形成安第斯型斑岩铜矿。阿根廷西北部大规模铜(金、钼)成矿与加厚的造山带垮塌有关,大规模成矿受控于造山岩石圈去根、软流圈物质和热上涌引发的大规模岩浆活动。总体而言,智利北部、阿根廷西北部安第斯型和造山带垮塌型斑岩铜矿,乃至南美安第斯山铜(金)矿成矿带形成,与中新生代以来南美大陆向西漂移、大西洋张开事件关系密切。  相似文献   

14.
Ophiolites in different tectonic settings are underlain and overlain by characteristic rock units which bear similar relationships to each other and to the ophiolite. Consideration of these relationships in three settings, an active arc (Burma), a continental margin (Oman) and an island ridge-basin system (Cyprus) suggests that in all three settings they resulted from ophiolite detachment at a spreading ridge in a narrow oceanic basin with passive margins. In Burma and possibly in Oman and Cyprus, detachment was related to regional compressive stress associated with an earlier collision. Following detachment and loss of the spreading system, perhaps accompanied by deposition of stratiform sulphides, the rock relationships can be explained by subduction of the remnant oceanic basin beneath the ophiolite forming an island arc, accretion of continent-derived turbidites in front of and beneath the ophiolite, and collision of the ophiolite and overlying volcanic arc with a passive continental margin. Subsequent collision-related events include emplacement of serpentinite diapirs, rise of mud matrix melange and its extrusion as debris flows, elevation of a foreland ridge, and subsidence of a basin on the internal side of the ridge. In Taiwan, olistostromes with local ophiolite clasts in the Lichi mélange could be explained as debris flows of extruded mud-matrix mélange diapirs, generated by tectonic burial of wet sediments during collision-related back-thrusting.  相似文献   

15.
The Meseta Chile Chico (MCC, 46.4°S) is the westernmost exposure of Eocene (lower basaltic sequence, LBS; 55–40 Ma, K–Ar ages) and Mio–Pliocene (upper basaltic sequence, UBS; 16–4 Ma, K–Ar ages) flood basalt volcanism in Patagonia. The MCC is located south of the Lago General Carrera-Buenos Aires (LGCBA), southeast from the present day Chile Triple Junction (CTJ), east of the actual volcanic gap between Southern South Volcanic Zone and Austral Volcanic Zone (SSVZ and AVZ, respectively) and just above the inferred location of the South Chile Ridge segment subducted at 6 Ma (SCR-1). Erupted products consist of mainly ne-normative olivine basalt with minor hy-normative tholeiites basalt, trachybasalt and basanite. MCC lavas are alkaline (42.7–53.1 wt.% SiO2, 3–8 wt.% Na2O+K2O) and relatively primitive (Ni: 133–360 ppm, Cr: 161–193 ppm, Co: 35–72 ppm, 4–16.5 MgO wt.%). They have a marked OIB-like signature, as shown by their isotopic compositions (87Sr/86Sro=0.70311–0.70414 and εNd=+4.7–+5.1) and their incompatible trace elements ratios (Ba/La=10–20, La/Nb=0.46–1.09, Ce/Pb=15.52–27.5, Sr/La<25), reflecting deep mantle origin. UBS-primitive lavas have characteristics similar to those of the Eocene LBS basalts, while UBS-intermediate lavas show geochemical imprints (La/Nb>1, Sr/La>25, low Ce/Pb, Nb/U) compatible with contamination by arc/slab-derived and/or crustal components. We propose that the genesis and extrusion of magmas is related to the opening of two slab windows due to the subduction of two active ridge segments beneath Patagonia during Eocene and Mio–Pliocene.  相似文献   

16.
雅鲁藏布江蛇绿岩的形成与日喀则弧前盆地沉积演化   总被引:10,自引:0,他引:10       下载免费PDF全文
雅鲁藏布江蛇绿岩被时代连续的日喀则群沉积覆盖及其形成时代(120-110Ma)与冈底斯弧开始发育的时代(115-100Ma)十分相近的事实使人们有理由提出:雅鲁藏布江蛇绿岩是否代表着印度板块与拉萨地块间的特提斯-喜玛拉雅洋残迹的疑问。根据近期的研究,笔者认为雅鲁藏布江蛇绿岩不是形成于三叠纪的特提斯-喜玛拉雅洋的残迹,而是特提斯-喜玛拉雅洋向拉萨地块俯冲的初期(阿普第-阿尔必期),由俯冲作用在冈底斯弧前地区引发的海底扩张作用形成的一种俯冲带上叠型蛇绿岩(supra-subduction zone ophiolites).至森诺曼期,弧前海底扩张作用停止,雅鲁藏布江蛇绿岩开始向南仰冲,在其南侧形成增生杂岩楔。仰起的蛇绿岩开始向日喀则弧前盆地提供蛇绿质碎屑,如冲堆组。森诺曼期-土仑期,盆地接受了一套深水复理石沉积,沉积物源部分来自南部边缘脊的蛇绿质碎屑,而大部分则来自北侧的弧火山岩和岩浆岩碎屑。森诺期-路坦丁期,盆地逐渐变浅,接受了浅海-滨海沉积,物源均来自北部的岩浆弧。至始新世末期,发育在盆地南侧的增生杂岩楔与印度板块发生碰撞,日喀则弧前盆地闭合。  相似文献   

17.
The continental growth mechanism of the Altaids in Central Asia is still in controversy between models of continuous subduction–accretion versus punctuated accretion by closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern Altaids, is a natural laboratory to address this controversy. Key questions that are heavily debated are: the closure time and subduction polarity of former oceans, the emplacement time of ophiolites, and the styles of accretion and collision. This paper reports new structural data, U- Pb and Ar–Ar ages from the eastern Beishan orogen that provide information on the accretion process and tectonic affiliation of various terranes. Our geochronological and structural results show that the younging direction of accretion was northwards and the subduction zone dipped southwards under the northern margin of the Shuangyingshan micro-continent. This long-lived and continuous accretion process formed the Hanshan accretionary prism. Our field investigations show that the emplacement of the Xiaohuangshan ophiolite was controlled by oceanic crust subduction beneath the forearc accretionary prism of the Shuangyingshan–Mazongshan composite arc to the south. Moreover, we address the age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon geochronology of meta-sedimentary rocks. We provide new information on the ages, subduction polarities, and affiliation of constituent structural units, as well as a new model of tectonic evolution of the eastern Beishan orogen. The accretionary processes and crustal growth of Central Asia were the result of multiple sequences of accretion and collision of manifold terranes.  相似文献   

18.
祁连山蛇绿岩带和原特提斯洋演化   总被引:2,自引:1,他引:1  
位于阿拉善地块和柴达木地块之间的祁连造山带记录原特提斯洋扩张、俯冲、闭合、大陆边缘增生和碰撞造山的完整过程。从南向北,祁连造山带发育有三条平行排列、不同类型的蛇绿岩带:(1)南部南祁连洋底高原-洋中脊-弧后蛇绿岩混杂带;(2)中部托勒山洋中脊型蛇绿岩带;(3)北部走廊南山SSZ型蛇绿岩带。南部南祁连蛇绿混杂岩带以拉脊山-永靖蛇绿岩为代表,为典型的洋底高原型蛇绿岩,是大洋板内地幔柱活动的产物,形成年龄为525~500Ma;中部托勒山蛇绿岩带沿熬油沟-玉石沟-冰沟-永登一线分布,为大洋中脊型蛇绿岩,蛇绿岩形成年龄为550~495Ma;北部蛇绿岩带包括弧前和弧后两种类型,弧前蛇绿岩以大岔大阪蛇绿岩为代表,形成时代为517~487Ma,反映初始俯冲/弧前扩张到弧后盆地的过程;弧后蛇绿岩以九个泉-老虎山蛇绿岩为代表,为典型的SSZ型蛇绿岩,是弧后扩张的产物,形成时代为奥陶纪(490~445Ma)。三个蛇绿岩带分别代表了新元古代-早古生代祁连洋演化历史不同环境的产物,对了解秦祁昆构造带原特提斯洋的构造演化过程有重要意义。蛇绿岩及弧火山岩的时空分布特征限定了原特提斯洋的俯冲极性为向北消减俯冲。  相似文献   

19.
The subduction of spreading ridges creates a special geodynamic setting distinguished by the interference of convergent and divergent boundaries between lithospheric plates and their long-term interaction accompanied by the formation of characteristic geological complexes and structures. The available data on subduction of the contemporary Chile Ridge make it possible to reconstruct such settings in the geological past. The subduction of the spreading ridge leads to uplift of the continental margin, cut off the accretionary wedge by means of tectonic erosion, emplacement of a fold-thrust structure and longitudinal strike-slip faults, and creates settings favorable for obduction of the young oceanic lithosphere. A lithospheric window expressed in geological and geophysical features opens beneath the continental margin at the continuation of the ridge axis. The subduction-related volcanic activity ceases above this window, giving way to specific proximal magmatism close to the boundary with the ocean and distal magmatism at a distance from this boundary. The proximal bimodal magmatism was related to the sources of tholeiitic basalts characteristic of the ridge involved in subduction and to the partial melting of its oceanic crust and sediments. The distal basaltic magmatism is a product of melting of the fertile oceanic asthenosphere ascending through the lithospheric window with subsequent transformation of magma in the mantle wedge and the continental crust. The use of the Chilean tectonotype for paleoreconstructions is limited by the diverse settings of ridge subduction. The Paleogene magmatism at the Pacific margin of Alaska, where the kinematics of subduction was close to the Chilean subduction, is similar to the proximal igneous rocks of Chile in composition and zoning, retaining some geological differences. Another aspect of the paleoreconstruction is discussed on the basis of Jurassic and Cretaceous granitoids of the Ekonai Terrane of the Anadyr-Koryak System and terranes of southern Alaska. These localities are known for a special, accretionary type of granitoids in the forearc region related to anatectic magma formation without participation of the plunging ridge. Proceeding from comparison with the Chilean tectonotype, the criteria for the identification of granitoids varying in their origin are considered. The effect of subducting ridges on continental margins changed over geologic time and was subject to the rhythm of supercontinental cycles.  相似文献   

20.
After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. From Early Paleozoic to Mesozoic, Tethys Ocean was subducted toward Pan-Cathaysian block group, which results in backarc expansion, arc-land collision and forearc accretion. When the backarc basin expands and reaches the small oceanic basin, ophiolite melange will be generated. As accretion had already occurred in the south of the continental margin in the earlier stage, the succeeding backarc expansion and the frontal arc position were migrated toward south correspondingly. Therefore, multiple ophiolite belts and magmatic rock belts occurred, and show a trend of decreasing age from north toward south. As the continental margin was split and migrated toward south and reached a high latitude position, i.e., with the shortening and subduction of oceanic crust, the sedimentary bodies at high latitude was accreted continuously toward low latitude area together with the formation of oceanic island, mixing of cold-type and warm-type organism was generated. Moreover, blocks split and separated from Pan-Cathaysian or Gondwana continental group cannot traverse the oceanic median ridge and joins with another continental block. As a result, the Kunlun belt on the SW margin of the Pan-Cathaysian land was resulted from the multi-arc orogenesis such as the backarc seabed expansion, arc-arc collision, arc-land collision oceanic bed, and the continuous southward accretion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号