首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 60 毫秒
1.
为了探明达里诺尔湖流域地表水与地下水的氢(H)、氧(O)同位素的变化特征及相互补给关系,于2013年对达里诺尔湖及其周围的河水、井水、泉水中H、O同位素进行了取样分析,并结合总溶解性固体悬浮物(TDS)和区域水文地质对达里诺尔湖流域的补给关系进行讨论分析.结果表明:1)河水、泉水、井水中H、O同位素的值基本落在全球雨水线上,湖水H、O同位素落在全球雨水线的右下方,说明河水、井水、泉水没有发生蒸发分馏,而湖水则发生较大程度的蒸发分馏;对达里诺尔湖流域地表水与地下水的H、O同位素进行回归模拟,得出该区域的蒸发趋势线方程:δD=4.8753δ18O-20.139(n=32,R2=0.9968).蒸发线表明,这些水样具有相同水源的特征.2)从实地考察发现,泉水补给河水,泉水和河水补给湖水,同时井水、泉水和河水有相似的δD、δ18O和TDS值,且不随季节变化而变化,推断达里诺尔湖附近地下水补给湖水;区域水文地质条件亦证明达里诺尔湖周边地下水补给湖水.  相似文献   

2.
流域范围内地表水和地下水转化对盐湖成盐元素的运移和富集具有十分重要的意义.本文通过尕斯库勒盐湖盆地内流域水体的水化学和B同位素特征识别了地表水和地下水之间的定量转化关系,在此基础上估算了流域中铀的补给通量.结果表明,流域水体中离子的分异除了蒸发浓缩作用之外,还受重力分异及掺杂作用的影响;上游库拉木勒克萨伊河和阿特阿特坎河水体在出山口附近转入地下并在中游补给地表水和地下水,其补给率分别占48.8%和51.2%,年均补给量分别为1.08×108和1.13×108m3/a;在中游至尾闾盐湖段,阿拉尔河和侧向补给对盐湖卤水的补给率占55.2%,深部水体的补给占44.8%;至少从5.7 ka以来,上游水体对盐湖卤水中铀的补给通量为4.11×103t,在湖积平原黏土沉积带以及祁漫塔格山前局部还原带可能具有较大规模的铀矿.研究结果有助于建立盐湖盆地水循环模式、揭示卤水资源形成机制;同时为尕斯库勒盐湖盆地水资源的高效利用和寻找铀矿提供理论依据和技术支持.  相似文献   

3.
    
The study of water vapour sources and water cycle patterns in the Yellow River source region is of great significance for ensuring water resource security in the arid and semi-arid regions of northern China. We established a precipitation stable isotope observation system in the Yellow River source region for three consecutive years (2020–2022), systematically analysed the spatial and temporal distribution characteristics of precipitation stable isotopes 2H and 18O in the Yellow River source region and their interrelationships with environmental factors and topography, and explored the regional water vapour transport pathways by using the HYSPLIT model and combining with the global reanalysis data. The results show that: (1) the δ18O and δ2H values of precipitation in the Yellow River source region follow the seasonal pattern, with the first half of the year being richer than the second half of the year; (2) the spatial variations of δ18O of precipitation in the Yellow River source region show a low in the southwest and a high in the northeast; (3) the water vapour source in the source area is basically stable, and the complex transport paths and the cross-effects of the local factors determine the stable isotope characteristics of the water, and the stable isotope characteristics of the water are determined by the cross-effects of the local factors, because the source of the water vapour and the local factors such as the height will not change significantly in the short term. Since the source of water vapour and local elevation factors will not change significantly in the short term, the precipitation pattern in the source area of the Yellow River can be considered to be basically stable.  相似文献   

4.
    
To investigate the water circulation of eastern Qinghai‐Tibet plateau during rainy season, water samples of precipitation, throughfall, fog, soil, litter and xylem were collected for stable isotope analysis. The results showed that precipitation mainly originated as a result of the East Asian Monsoon, and the secondarily evaporated water from subalpine ecosystem was an important part in local atmospheric water cycle. The deuterium excess of rainfall in the alpine meadow was evidently higher than the precipitation in the Dengsheng stations. This suggests that a large part of precipitation in alpine meadow was derived from secondarily evaporated water and the mean contribution was 39·57%, about 3·65 mm produced shortly after rain events. Through the contrast of delta (d)‐excess value in different water samples, it could be concluded that the water in subalpine shrubland and transpiration of subalpine dark coniferous forest were the main source of secondarily evaporated water that transferred to alpine meadow. Hence, the precipitation on the east Qinghai‐Tibet plateau was doubly controlled by monsoon and local water circulation in alpine ecosystems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Many oases are experiencing severe groundwater depletion due to increased population, expanding agriculture and economic development. For sustainable development, quantifying groundwater recharge resources are fundamentally important. In this study, stable isotope techniques were employed to identify recharge sources of groundwater and quantitatively evaluate their contribution ratios in the Dunhuang Oasis, northwest China. Our findings indicate that heavy isotopes in shallow groundwater are more negative than those in deep groundwater, which is attributed to shallow groundwater that was modern and deep groundwater that was old. Irrigated return water and lateral groundwater flow from the Qilian Mountains are considered as the two main sources of shallow groundwater, accounting for 35% and 65% of the total recharge, respectively. Thus, as the main groundwater source of the Dunhuang Oasis, the Qilian Mountain Front should be protected against over-exploitation. Our results provide not only fundamental knowledge for groundwater management of aquifers of the Oasis, but also valuable water management information for other similar arid oases worldwide.  相似文献   

6.
以安徽淮南采煤沉陷积水为研究对象,通过样品采集与测试,研究不同沉陷年限及类型积水水文地球化学和氢氧稳定同位素组成特征及影响因素.结果表明:(1)研究区水化学类型主要为Cl-Na、HCO3·Cl-Na型,沉陷积水中常量离子主要来源于蒸发岩溶解和硅酸盐风化,受蒸发作用和人为活动的影响明显,水化学组成随沉陷时间和类型变化不大.(2)淮南大气降水线方程为:δD=8.85δ18O+18.73,沉陷区积水氢氧稳定同位素值在淮南大气降水线右下方依次分布并接近降水线,表明沉陷积水主要来源于大气降水.(3)在降水稀释、水体蒸发及地下水补给的作用下,随着沉陷年限的增加,积水中重同位素越来越贫化,同一年限不同类型的积水同位素值变化较小.  相似文献   

7.
    
Water resources are the most critical factors to ecology and society in arid basins, such as Kaidu River basin. Isotope technique was convenient to trace this process and reveal the influence from the environment. In this paper, we try to investigate the temporal and spatial characteristics in stable isotope (18O and 2H) of surface water and groundwater in Kaidu River. Through the water stable isotope composition measurement, spatial and temporal characteristics of deuterium (δ2H) and oxygen 18 (δ18O) were analysed. It is revealed that (1) comparing the stream water line with the groundwater line and local meteorological water line of Urumqi City, it is found that the contribution of precipitation to surface water in stream runoff is the main source, whereas the surface water is the main source of groundwater. Groundwater is mainly drainage of surface runoff in the river; (2) in the main stream of Kaidu River, the spatial variability of river water showed a ‘heavier‐lighter‐heavier’ change along with the main stream for δ18O, and temporal variability showed higher in summer and lower in winter; (3) the δ18O and δ2H values of groundwater samples ranged from ?11.36 to ?7.97‰ and ?73.45 to ?60.05‰, respectively. There is an increasing trend of isotopic values along the groundwater flow path. The seasonal fluctuation of δ18O is not clear in most samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
在地震地下流体观测研究中,基于氢氧同位素示踪技术研究地下水补给源及循环过程是常用的技术方法之一。本文给出了九江地震台2号观测井水、大气降水、周边水库水及高山泉水等样品的氢氧同位素测定结果,表明地下水δ~(18)O测值介于-7.59‰~-6.09‰,平均值-6.99‰,δD测值介于-45.22‰~-39.69‰,平均值-42.32‰,变异异数分别为0.09、0.16;大气降水δ~(18)O测值介于-13.00‰~-1.27‰,平均值-4.74‰,δD测值介于-96.13‰~-4.74‰,平均值-46.87‰,变异异数分别为0.40、0.56,与降水相比,地下水氢氧同位素变化更为稳定。大气降水氢氧同位素2017年5~10月表现为明显的降水效应,2018年11~4月表现为明显的温度效应,而地下水氢氧同位素并未表现出明显的降水效应和温度效应。氢氧同位素及过量氘揭示地下水在下渗补给前经历了明显的蒸发分馏作用,并与围岩进行~(18)O交换,δ~(18)O与δD计算得出的补给高程分别约为647、440m。九江台观测井的观测层地下水为大气降水成因的构造裂隙水,属于大气成因型且循环过程为较稳定的裂隙水补给并形成承压自流井。  相似文献   

9.
    
Due to the temporal decoupling of water and sediment sources in a large river basin, a flood from a sediment source area with high suspended sediment concentration (SSC) may be diluted by flow from a major runoff source area with low SSC. In this paper, this dilution effect is considered for 145 flood events from the Yellow River, China. Two indices (β1 and β2) describing the dilution effect are proposed, based on water and sediment from the clear water source area and the coarse sediment producing area. Regression equations between channel sedimentation (Sdep) and β1 and β2 are established based on flood events and annual data, respectively. The results show that dilution reduces channel sedimentation in the lower reaches by 34?1% and that this is related to a reduced frequency of hyperconcentrated flows in the lower reaches. The Longyangxia Reservoir for hydro‐electric generation has stored huge quantities of clear runoff from the upper Yellow River during high‐flow season since 1985, greatly reducing the dilution of the hyperconcentrated floods and therefore enhancing sedimentation in the lower reaches. For the purpose of reducing sedimentation, changing the operational mode of the Longyangxia Reservoir to restore the dilution effect is suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
  总被引:5,自引:0,他引:5  
Stable isotopic (δDVSMOW and δ18OVSMOW) and geochemical signatures were employed to constrain the geochemical evolution and sources of groundwater recharge in the arid Shule River Basin, Northwestern China, where extensive groundwater extraction occurs for agricultural and domestic supply. Springs in the mountain front of the Qilian Mountains, the Yumen‐Tashi groundwater (YTG), and the Guazhou groundwater (GZG) were Ca‐HCO3, Ca‐Mg‐HCO3‐SO4 and Na‐Mg‐SO4‐Cl type waters, respectively. Total dissolved solids (TDS) and major ion (Mg2+, Na+, Ca2+, K+, SO42?, Cl? and NO3?) concentrations of groundwater gradually increase from the mountain front to the lower reaches of the Guazhou Basin. Geochemical evolution in groundwater was possibly due to a combination of mineral dissolution, mixing processes and evapotranspiration along groundwater flow paths. The isotopic and geochemical variations in melt water, springs, river water, YTG and GZG, together with the end‐member mixing analysis (EMMA) indicate that the springs in the mountain front mainly originate from precipitation, the infiltration of melt water and river in the upper reaches; the lateral groundwater from the mountain front and river water in the middle reaches are probably effective recharge sources for the YTG, while contribution of precipitation to YTG is extremely limited; the GZG is mainly recharged by lateral groundwater flow from the Yumen‐Tashi Basin and irrigation return flow. The general characteristics of groundwater in the Shule River Basin have been initially identified, and the results should facilitate integrated management of groundwater and surface water resources in the study area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
    
Plant source water identification using stable isotopes is now a common practice in ecohydrological process investigations. Notwithstanding, little critical evaluation of the approaches for source apportionment have been conducted. Here, we present a critical evaluation of the main methods used for source apportionment between vadose and saturated zone water: simple mass balance and Bayesian mixing models. We leverage new isotope stem water samples from a diverse set of tree species in a strikingly uniform terrain and soil conditions at the Christchurch Botanic Garden, New Zealand. Our results show that using δ2H alone in a simple, two‐source mass balance approach leads to erroneous results, particularly an apparent overestimation of groundwater contribution to xylem. Alternatively, using both δ2H and δ18O in a Bayesian inference framework improves the source water estimates and is more useful than the simple mass balance approach, particularly when soil and groundwater contributions are relatively disproportionate. We suggest that plant source water quantification methods should take into consideration the possible effects of 2H/1H fractionation. The Bayesian inference approach used here may be less sensitive to 2H/1H fractionation effects than simple mass balance methods.  相似文献   

12.
    
Ziyong Sun  Xiang Long  Rui Ma 《水文研究》2016,30(9):1388-1402
There is considerable interest in naturalizing flow regime on managed rivers to slow the spread of saltcedar (Tamarix ramosissima) invasion in southwestern USA or to preserve riparian forests dominated by saltcedar and other species in northwestern China. However, little is known about the responses of established saltcedar in water sources to frequent intra‐annual fluctuation of water table resulting from this new, more dynamic flow regime. This study investigates how saltcedar at a riparian site in the middle reaches of the Heihe River, northwest China, responds in water sources use to intra‐annual water table fluctuations. Stable oxygen isotope was employed to determine accurate depth at which saltcedar obtains its water supply, and soil moisture monitoring was used to determine sources of plant‐available soil water. We found that the primary zone of water uptake by saltcedar were stable at 25–60 cm depth, but the water sources used by saltcedar switched between groundwater and soil moisture with the water table fluctuations. Saltcedar derived its water from groundwater when water table was at depth less than 60 cm but switched to soil moisture at 25–60 cm depth when water table declined. It is supposed that the well‐developed clay layer at 60–80 cm depth constrained lateral roots of saltcedar to the soil layers above 60 cm, while the fine‐textured soils at this site, which were periodically resaturated by rising groundwater before the stored soil moisture had become depleted, provided an important water reservoir for saltcedar when groundwater dropped below the primary zone of fine roots. The root distribution of saltcedar may also be related to local groundwater history. The quick decline in water table in the early 1980s when the riparian saltcedar had established may strand its roots in the shallow unsaturated zone. We suggested that raising the water table periodically instead of maintaining it invariably above the rooting depth could sustain desired facultative phreatophytes while maximizing water deliveries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号