首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
外强迫对热带季节内振荡影响的模拟研究   总被引:3,自引:2,他引:3  
应用经过修改的NCAR CCM3模式和CAM2模式进行的数值实验结果以及NCEP的GFS模式的输出结果讨论了海温等外强迫作用对热带季节内振荡的影响.结果表明,热带季节内振荡是热带大气固有的内部变率.它是由大气内部过程的相互作用决定的.但外强迫对热带季节内振荡的强度、传播方向等有明显的影响.当外强迫没有变化时,模式可以模拟出与观测近似的低频振荡.当作为外强迫的海温和太阳辐射有年内季节变化时,模式模拟的季节内振荡则明显减弱.当海温与辐射不仅有季节变化而且有年际变化时,模式模拟的季节内振荡会进一步减弱.具有长周期的外强迫还会削弱季节内振荡中东移波动的能量而增加静止波的强度.在与海洋模式耦合的状态下,模式不受来自海洋的外强迫影响,而是与海洋构成一个耦合系统,可以产生最强的季节内振荡.  相似文献   

2.
热带地区的湿绝热过程会放大地表的增暖幅度,在约200 hPa高度上产生增暖峰值,该现象被称为“热带对流层放大”。热带对流层放大是气候变化的显著特征之一,是检验气候模式性能的重要指标。本文基于RSS4.0卫星数据和ERA5.1再分析资料,系统分析了FGOALS-g3模式对气温变化特别是热带对流层放大的模拟能力,并通过新旧版本模式(FGOALS-g3与FGOALS-g2)的比较指出了新版本模式模拟技巧的提升;通过比较FGOALS-g3历史模拟试验与GAMIL3单独大气模式AMIP试验结果,研究了海气耦合过程对模拟结果的影响。结果表明,FGOALS-g3能够合理再现观测中的全球对流层显著增温趋势,但模拟的增温趋势偏强,这与气候系统内部变率以及两代气候系统模式所使用的历史气候外强迫差异有关。其对于观测中热带平均增温廓线以及热带对流层放大的空间分布均表现出良好的模拟性能,模拟的热带对流层放大现象的量值大小存在正偏差,与模拟的对流层低层温度变化偏强有关。FGOALS-g3较FGOALS-g2在性能上有一定提升,主要表现为增加了对于火山气溶胶强迫的响应,并在热带对流层放大的空间分布及平均气温趋势廓线...  相似文献   

3.
In this study, a coupled atmosphere-surface “climate feedback-response analysis method” (CFRAM) was applied to the slab ocean model version of the NCAR CCSM3.0 to understand the tropospheric warming due to a doubling of CO2 concentration through quantifying the contributions of each climate feedback process. It is shown that the tropospheric warming displays distinct meridional and vertical patterns that are in a good agreement with the multi-model mean projection from the IPCC AR4. In the tropics, the warming in the upper troposphere is stronger than in the lower troposphere, leading to a decrease in temperature lapse rate, whereas in high latitudes the opposite it true. In terms of meridional contrast, the lower tropospheric warming in the tropics is weaker than that in high latitudes, resulting in a weakened meridional temperature gradient. In the upper troposphere the meridional temperature gradient is enhanced due to much stronger warming in the tropics than in high latitudes. Using the CFRAM method, we analyzed both radiative feedbacks, which have been emphasized in previous climate feedback analysis, and non-radiative feedbacks. It is shown that non-radiative (radiative) feedbacks are the major contributors to the temperature lapse rate decrease (increase) in the tropical (polar) region. Atmospheric convection is the leading contributor to temperature lapse rate decrease in the tropics. The cloud feedback also has non-negligible contributions. In the polar region, water vapor feedback is the main contributor to the temperature lapse rate increase, followed by albedo feedback and CO2 forcing. The decrease of meridional temperature gradient in the lower troposphere is mainly due to strong cooling from convection and cloud feedback in the tropics and the strong warming from albedo feedback in the polar region. The strengthening of meridional temperature gradient in the upper troposphere can be attributed to the warming associated with convection and cloud feedback in the tropics. Since convection is the leading contributor to the warming differences between tropical lower and upper troposphere, and between the tropical and polar regions, this study indicates that tropical convection plays a critical role in determining the climate sensitivity. In addition, the CFRAM analysis shows that convective process and water vapor feedback are the two major contributors to the tropical upper troposphere temperature change, indicating that the excessive upper tropospheric warming in the IPCC AR4 models may be due to overestimated warming from convective process or underestimated cooling due to water vapor feedback.  相似文献   

4.
We compare two 28-year simulations performed with two versions of the Global Environmental Multiscale model run in variable-resolution mode. The two versions differ only by small differences in their radiation scheme. The most significant modification introduced is a reduction in the ice effective radius, which is observed to increase absorption of upwelling infrared radiation and increase temperature in the upper troposphere. The resulting change in vertical lapse rate is then observed to drive a resolution-dependent response of convection, which in turn modifies the zonal circulation and induces significant changes in simulated Atlantic tropical cyclone activity. The resulting change in vertical lapse rate and its implication in the context of anthropogenic climate change are discussed.  相似文献   

5.
 A global, three-dimensional climate model, developed by coupling the CCCma second-generation atmospheric general circulation model (GCM2) to a version of the GFDL modular ocean model (MOM1), forms the basis for extended simulations of past, current and projected future climate. The spin-up and coupling procedures are described, as is the resulting climate based on a 200 year model simulation with constant atmospheric composition and external forcing. The simulated climate is systematically compared to available observations in terms of mean climate quantities and their spatial patterns, temporal variability, and regional behavior. Such comparison demonstrates a generally successful reproduction of the broad features of mean climate quantities, albeit with local discrepancies. Variability is generally well-simulated over land, but somewhat underestimated in the tropical ocean and the extratropical storm-track regions. The modelled climate state shows only small trends, indicating a reasonable level of balance at the surface, which is achieved in part by the use of heat and freshwater flux adjustments. The control simulation provides a basis against which to compare simulated climate change due to historical and projected greenhouse gas and aerosol forcing as described in companion publications. Received: 24 September 1998 / Accepted: 8 October 1999  相似文献   

6.
Interdecadal modulation of Australian rainfall   总被引:1,自引:0,他引:1  
Interdecadal variability is investigated in a 300 year run of the Parallel Climate Model, a global coupled atmosphere-land-ocean-sea ice model. The model simulates El Niño variability of realistic magnitude and is found to produce interdecadal characteristics similar to those observed, both in frequency, spatial patterns and amplitude. Modulation of Australian rainfall on interdecadal time scales is similar to observed and is found to have contributions from both the modulation of ENSO, changes in the position of the Walker circulation and variations in western Pacific SSTs. A slackening of the equatorial Pacific thermocline slope is associated with diminished ENSO variability during interdecadal periods of positive tropical Pacific SSTs. These interdecadal changes to ENSO and shifts in the position of the Walker circulation are physical mechanisms that contribute to the weakened correlations between the SOI and Australian climate during interdecadal periods of positive tropical Pacific SSTs. Warm anomalies in the western Pacific also contribute to a decrease in Australian rainfall in the model on interdecadal time scales.  相似文献   

7.
We examine the internal climate variability of a 1000?year long integration of the third version of the Hadley Centre coupled model (HadCM3). The model requires no flux adjustment, needs no spin up procedure prior to coupling and has a stable climate in the global mean. The principal aims are (1) to validate the internal climate variability against observed climate variability, (2) to examine the model for any periodic modes of variability, (3) to use the model estimate of internal climate variability to asses the probability of occurrence of observed trends in climate variables, and (4) to compare HadCM3 with the previous version of the Hadley Centre model, HadCM2. The magnitude and frequency characteristics of the variability of the global mean surface temperature of HadCM3 on annual to decadal time scales is in good agreement with the observations. Observed upward trends in temperature over the last 20?years and longer are inconsistent with the internal variability of the model. The simulated spatial pattern of surface temperature variability is qualitatively similar to that observed, although there is an overestimation of the land temperature variability and regional errors in ocean temperature variability. The model simulates an El Niño Southern Oscillation with an irregular 3–4?year cycle, and with a teleconnection pattern which is much more like the observations than was found in HadCM2. The interdecadal variability of the model ocean in the tropical Pacific, North Pacific and North Atlantic is broadly similar to that in the real world with none of the simulated patterns having any periodic behaviour. HadCM3 simulates an Arctic Oscillation/North Atlantic Oscillation (NAO) in Northern Hemisphere winter which has a spatial pattern consistent with the observations in the Atlantic region, but has too much teleconnection with the North Pacific. The recent observed upward trend in the NAO index is inconsistent with the model internal variability. The variability of the simulated zonal mean atmospheric temperature shows some marked differences to the observed zonal mean temperature variability, although the comparison is confounded by the sparse observational network and its possible contamination by a climate change signal.  相似文献   

8.
R. A. Colman 《Climate Dynamics》2001,17(5-6):391-405
This study addresses the question: what vertical regions contribute the most to water vapor, surface temperature, lapse rate and cloud fraction feedback strengths in a general circulation model? Multi-level offline radiation perturbation calculations are used to diagnose the feedback contribution from each model level. As a first step, to locate regions of maximum radiative sensitivity to climate changes, the top of atmosphere radiative impact for each feedback is explored for each process by means of idealized parameter perturbations on top of a control (1?×?CO2) model climate. As a second step, the actual feedbacks themselves are calculated using the changes modelled from a 2?×?CO2 experiment. The impact of clouds on water vapor and lapse rate feedbacks is also isolated using `clear sky' calculations. Considering the idealized changes, it is found that the radiative sensitivity to water vapor changes is a maximum in the tropical lower troposphere. The sensitivity to temperature changes has both upper and lower tropospheric maxima. The sensitivity to idealized cloud changes is positive (warming) for upper level cloud increases but negative (cooling) for lower level increases, due to competing long and shortwave effects. Considering the actual feedbacks, it is found that water vapor feedback is a maximum in the tropical upper troposphere, due to the large relative increases in specific humidity which occur there. The actual lapse rate feedback changes sign with latitude and is a maximum (negative) again in the tropical upper troposphere. Cloud feedbacks reflect the general decrease in low- to mid-level low-latitude cloud, with an increase in the very highest cloud. This produces a net positive (negative) shortwave (longwave) cloud feedback. The role of clouds in the strength of the water vapor and lapse rate feedbacks is also discussed.  相似文献   

9.
General circulation model experiments designed to estimate the magnitude and structure of internally generated variability and to help understand the mechanisms underlying this variability are described. The experiments consist of three multi-century integrations of a rhomboidal 15, 9 level, version of the Center for Ocean-Land-Atmosphere Studies atmospheric general circulation model: a run with fixed sea surface temperatures and equinox solar radiation, a run with seasonally varying climatological sea surface temperatures and seasonally varying solar forcing, and a run with seasonally varying solar forcing in which the state of the ocean is predicted by a 3° by 3°, 16 vertical level, nearly global domain version of the Geophysical Fluid Dynamics Laboratory Modular Ocean Model. No flux correction is used in the coupled model integration. Selected surface fields of the three runs are compared to each other as well as to the observed climate. Statistical properties of variability on interannual time scales are compared between the runs. Evidence is presented that climate time scale variability in the simulations is produced by random weather time scale forcing due to the integrating effect of elements of the system with long memories. The importance of ocean variability for land climate variability is demonstrated and attributed to both the memory effect and coupled atmosphere-ocean instability.  相似文献   

10.
A series of model experiments with the coupled Max-Planck-Institute ECHAM5/OM climate model have been investigated and compared with microwave measurements from the Microwave Sounding Unit (MSU) and re-analysis data for the period 1979?C2008. The evaluation is carried out by computing the Temperature in the Lower Troposphere (TLT) and Temperature in the Middle Troposphere (TMT) using the MSU weights from both University of Alabama (UAH) and Remote Sensing Systems (RSS) and restricting the study to primarily the tropical oceans. When forced by analysed sea surface temperature the model reproduces accurately the time-evolution of the mean outgoing tropospheric microwave radiation especially over tropical oceans but with a minor bias towards higher temperatures in the upper troposphere. The latest reanalyses data from the 25?year Japanese re-analysis (JRA25) and European Center for Medium Range Weather Forecasts Interim Reanalysis are in very close agreement with the time-evolution of the MSU data with a correlation of 0.98 and 0.96, respectively. The re-analysis trends are similar to the trends obtained from UAH but smaller than the trends from RSS. Comparison of TLT, computed from observations from UAH and RSS, with Sea Surface Temperature indicates that RSS has a warm bias after 1993. In order to identify the significance of the tropospheric linear temperature trends we determined the natural variability of 30-year trends from a 500?year control integration of the coupled ECHAM5 model. The model exhibits natural unforced variations of the 30?year tropospheric trend that vary within ±0.2?K/decade for the tropical oceans. This general result is supported by similar results from the Geophysical Fluid Dynamics Laboratory (GFDL) coupled climate model. Present MSU observations from UAH for the period 1979?C2008 are well within this range but RSS is close to the upper positive limit of this variability. We have also compared the trend of the vertical lapse rate over the tropical oceans assuming that the difference between TLT and TMT is an approximate measure of the lapse rate. The TLT?CTMT trend is larger in both the measurements and in the JRA25 than in the model runs by 0.04?C0.06?K/decade. Furthermore, a calculation of all 30?year TLT?CTMT trends of the unforced 500-year integration vary between ±0.03?K/decade suggesting that the models have a minor systematic warm bias in the upper troposphere.  相似文献   

11.
We carry out climate simulations for 1880–2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880–2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies include unrealistically weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. Greatest uncertainties in the forcings are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
In this study, the effects of volcanic forcing on North Pacific climate variability, on interannual to decadal time scales, are examined using climate model simulations covering the last 600?years. The model used is the Bergen Climate Model, a fully coupled atmosphere–ocean general circulation model. It is found that natural external forcings, such as tropical strong volcanic eruptions (SVEs) and variations in total solar irradiance, play an important role in regulating North Pacific Decadal Variability (NPDV). In response to tropical SVEs the lower stratospheric pole–to–equator temperature gradient is enhanced. The North polar vortex is strengthened, which forces a significant positive Arctic Oscillation. At the same time, dipole zonal wind anomalies associated with strong polar vortex propagate downward from the lower stratosphere. Through positive feedbacks in the troposphere, the surface westerly winds across the central North Pacific are significantly weakened, and positive sea level pressure anomalies are formed in the North Pacific. This anomalous surface circulation results in changes in the net heat fluxes and the oceanic advection across the North Pacific. As a result of this, warm water converges in the subtropical western North Pacific, where the surface waters in addition are heated by significantly reduced latent and sensible heat fluxes from the ocean. In the eastern and high–latitude North Pacific the ocean loses more heat, and large–scale decreases in sea surface temperatures are found. The overall response of this chain of events is that the North Pacific enters a negative phase of the Pacific decadal oscillation (PDO), and this negative phase of the PDO is maintained for several years. It is thus concluded that the volcanic forcing plays a key role in the phasing of the PDO. The model results furthermore highlight the important role of troposphere–stratosphere coupling, tropical–extratropical teleconnections and extratropical ocean–atmosphere interactions for describing NPDV.  相似文献   

13.
夏季亚洲-太平洋涛动的耦合模式模拟   总被引:1,自引:0,他引:1  
亚洲-太平洋涛动是夏季欧亚大陆东部(15°—50°N,60°—120°E)与北太平洋上空(15°—50°N,180°—120°W)温度场反相变化的现象。亚洲-太平洋涛动指数由对流层上层(500—200 hPa)温度定义,反映了亚洲-太平洋纬向热力差异。基于一个全球海-气耦合模式FGOALS_gl的20世纪气候模拟试验结果,讨论了其对20世纪亚洲-太平洋涛动指数变化的模拟能力。结果表明,较之ERA-40再分析资料(1960—1999年),模式很好地刻画出上层温度场的平均态和主导模态的空间型。从趋势上看,模式对北太平洋上空温度的年代际变化和趋势模拟较好,但未能模拟出亚洲东部陆地上空的降温趋势。从频谱分析结果看,模拟的亚洲-太平洋涛动指数2—3,a的年际变率与再分析资料相当,5-7 a周期的变率较弱。模式能够较好地模拟出与亚洲-太平洋涛动指数相关的亚洲季风区气候异常。在20世纪模拟中,外强迫因子会改变耦合系统的年际变率,在自然因子强迫下亚洲-太平洋涛动指数的功率谱向低频方向增强,人为强迫因子的作用则相反。自然强迫因子和人为强迫因子在不同时期对亚洲-太平洋涛动年际和年代际变率的作用不同。在年际变率中人为强迫因子能够控制亚洲-太平洋涛动的变率使其不致过大;在年代际变率中人为强迫因子会增强自然强迫下亚洲-太平洋涛动的变率。模式上层温度的主导模态受ENSO调制,可能影响亚洲-太平洋涛动的年际变率。因此,模式对ENSO模拟能力的缺陷是制约模式对流层上层温度及亚洲-太平洋涛动指数变率的重要因素。  相似文献   

14.
The El Nin o-Southern Oscillation (ENSO) is modulated by many factors; most previous studies have emphasized the roles of wind stress and heat flux in the tropical Pacific. Freshwater flux (FWF) is another environmental forcing to the ocean; its effect and the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (Q B ) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Q B variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nin a and enhancing warming during El Nin o, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.  相似文献   

15.
The snow-sea-ice albedo parameterization in an atmospheric general circulation model (GCM), coupled to a simple mixed-layer ocean and run with an annual cycle of solar forcing, is altered from a version of the same model described by Washington and Meehl (1984). The model with the revised formulation is run to equilibrium for 1 × CO2 and 2 × CO2 experiments. The 1 ×CO2 (control) simulation produces a global mean climate about 1° warmer than the original version, and sea-ice extent is reduced. The model with the altered parameterization displays heightened sensitivity in the global means, but the geographical patterns of climate change due to increased carbon dioxide (CO2) are qualitatively similar. The magnitude of the climate change is affected, not only in areas directly influenced by snow and ice changes but also in other regions of the globe, including the tropics where sea-surface temperature, evaporation, and precipitation over the oceans are greater. With the less-sensitive formulation, the global mean surface air temperature increase is 3.5 °C, and the increase of global mean precipitation is 7.12%. The revised formulation produces a globally averaged surface air temperature increase of 4.04 °C and a precipitation increase of 7.25%, as well as greater warming of the upper tropical troposphere. Sensitivity of surface hydrology is qualitatively similar between the two cases with the larger-magnitude changes in the revised snow and ice-albedo scheme experiment. Variability of surface air temperature in the model is comparable to observations in most areas except at high latitudes during winter. In those regions, temporal variation of the sea-ice margin and fluctuations of snow cover dependent on the snow-ice-albedo formulation contribute to larger-than-observed temperature variability. This study highlights an uncertainty associated with results from current climate GCMs that use highly parameterized snow-sea-ice albedo schemes with simple mixed-layer ocean models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
There are many indicators that human activity may change climate conditions all around the globe through emissions of greenhouse gases. In addition, aerosol particles are emitted from various natural and anthropogenic sources. One important source of aerosols arises from biomass burning, particularly in low latitudes where shifting cultivation and land degradation lead to enhanced aerosol burden. In this study the counteracting effects of greenhouse gases and aerosols on African climate are compared using climate model experiments with fully interactive aerosols from different sources. The consideration of aerosol emissions induces a remarkable decrease in short-wave solar irradiation near the surface, especially in winter and autumn in tropical West Africa and the Congo Basin where biomass burning is mainly prevailing. This directly leads to a modification of the surface energy budget with reduced sensible heat fluxes. As a consequence, temperature decreases, compensating the strong warming signal due to enhanced trace gas concentrations. While precipitation in tropical Africa is less sensitive to the greenhouse warming, it tends to decrease, if the effect of aerosols from biomass burning is taken into account. This is partly due to the local impact of enhanced aerosol burden and partly to modifications of the large-scale monsoon circulation in the lower troposphere, usually lagging behind the season with maximum aerosol emissions. In the model equilibrium experiments, the greenhouse gas impact on temperature stands out from internal variability at various time scales from daily to decadaland the same holds for precipitation under the additional aerosol forcing. Greenhouse gases and aerosols exhibit an opposite effect on daily temperature extremes, resulting in an compensation of the individual responses under the combined forcing. In terms of precipitation, daily extreme events tend to be reduced under aerosol forcing, particularly over the tropical Atlantic and the Congo basin. These results suggest that the simulation of the multiple aerosol effects from anthropogenic sources represents an important factor in tropical climate change, hence, requiring more attention in climate modelling attempts.  相似文献   

17.
Summary ¶The potential predictability of the monthly and seasonal means during the Northern Hemisphere summer and winter is studied by estimating the signal-to-noise ratio. Based on 33 years of daily low-level wind observations and 24 years of satellite observations of outgoing long wave radiation, the predictability of the Asian summer monsoon region is contrasted with that over other tropical regions. A method of separating the contributions from slowly varying boundary forcing and internal dynamics (e.g., intraseasonal oscillations) that determine the predictability of the monthly mean tropical climate is proposed. We show that the Indian monsoon climate is only marginally predictable in monthly time scales as the contribution of the boundary forcing in this region is relatively low and that of the internal dynamics is relatively large. It is shown that excluding the Indian monsoon region, the predictable region is larger and predictability is higher in the tropics during northern summer. Even though the boundary forced variance is large during northern winter, the predictable region is smaller as the internal variance is larger and covers a larger region during northern winter (due to stronger intraseasonal activity). Consistent with the estimates of predictability of monthly means, estimates of potential predictability on seasonal time scales also indicate that predictability of seasonal mean Indian monsoon is limited.Received December 6, 2002; accepted March 16, 2003 Published online: June 12, 2003  相似文献   

18.
The variability of the climate during the last millennium is partly forced by changes in total solar irradiance (TSI). Nevertheless, the amplitude of these TSI changes is very small so that recent reconstruction data suggest that low frequency variations in the North Atlantic Oscillation (NAO) and in the thermohaline circulation may have amplified, in the North Atlantic sector and mostly in winter, the radiative changes due to TSI variations. In this study we use a state-of-the-art climate model to simulate the last millennium. We find that modelled variations of surface temperature in the Northern Hemisphere are coherent with existing reconstructions. Moreover, in the model, the low frequency variability of this mean hemispheric temperature is found to be correlated at 0.74 with the solar forcing for the period 1001?C1860. Then, we focus on the regional climatic fingerprint of solar forcing in winter and find a significant relationship between the low frequency TSI forcing and the NAO with a time lag of more than 40?years for the response of the NAO. Such a lag is larger than the around 20-year lag suggested in other studies. We argue that this lag is due, in the model, to a northward shift of the tropical atmospheric convection in the Pacific Ocean, which is maximum more than four decades after the solar forcing increase. This shift then forces a positive NAO through an atmospheric wave connection related to the jet-stream wave guide. The shift of the tropical convection is due to the persistence of anomalous warm SST forcing the anomalous precipitation, associated with the advection of warm SST by the North Pacific subtropical gyre in a few decades. Finally, we analyse the response of the Atlantic meridional overturning circulation to solar forcing and find that the former is weakened when the latter increases. Changes in wind stress, notably due to the NAO, modify the barotropic streamfunction in the Atlantic 50?years after solar variations. This implies a wind-driven modification of the oceanic circulation in the Atlantic sector in response to changes in solar forcing, in addition to the variations of the thermohaline circulation.  相似文献   

19.
Historically, El Nino-like events simulated in global coupled climate models have had reduced amplitude compared to observations. Here, El Nino-like phenomena are compared in ten sensitivity experiments using two recent global coupled models. These models have various combinations of horizontal and vertical ocean resolution, ocean physics, and atmospheric model resolution. It is demonstrated that the lower the value of the ocean background vertical diffusivity, the greater the amplitude of El Nino variability which is related primarily to a sharper equatorial thermocline. Among models with low background vertical diffusivity, stronger equatorial zonal wind stress is associated with relatively higher amplitude El Nino variability along with more realistic east–west sea surface temperature (SST) gradient along the equator. The SST seasonal cycle in the eastern tropical Pacific has too much of a semiannual component with a double intertropical convergence zone (ITCZ) in all experiments, and thus does not affect, nor is it affected by, the amplitude of El Nino variability. Systematic errors affecting the spatial variability of El Nino in the experiments are characterized by the eastern equatorial Pacific cold tongue regime extending too far westward into the warm pool. The time scales of interannual variability (as represented by time series of Nino3 SSTs) show significant power in the 3–4 year ENSO band and 2–2.5 year tropospheric biennial oscillation (TBO) band in the model experiments. The TBO periods in the models agree well with the observations, while the ENSO periods are near the short end of the range of 3–6 years observed during the period 1950–94. The close association between interannual variability of equatorial eastern Pacific SSTs and large-scale SST patterns is represented by significant correlations between Nino3 time series and the PC time series of the first EOFs of near-global SSTs in the models and observations. Received: 17 April 2000 / Accepted: 17 August 2000  相似文献   

20.
Centennial climate variability during the Holocene has been simulated in two 10,000 year experiments using the intermediate-complexity ECBilt model. ECBilt contains a dynamic atmosphere, a global 3-D ocean model and a thermodynamic sea-ice model. One experiment uses orbital forcing and solar irradiance forcing, which is based on the Stuiver et al. residual 14C record spliced into the Lean et al. reconstruction. The other experiment uses orbital forcing alone. A glacier model is coupled off-line to the climate model. A time scale analysis shows that the response in atmospheric parameters to the irradiance forcing can be characterised as the direct response of a system with a large thermal inertia. This is evident in parameters like surface air temperature, monsoon precipitation and glacier length, which show a stronger response for longer time scales. The oceanic response, on the other hand, is strongly modified by internal feedback processes. The solar irradiance forcing excites a (damped) mode of the thermohaline circulation (THC) in the North Atlantic Ocean, similar to the loop-oscillator modes associated with random-noise freshwater forcing. This results in a significant peak (at time scales 200–250 year) in the THC spectrum which is absent in the reference run. The THC response diminishes the sea surface temperature response at high latitudes, while it gives rise to a signal in the sea surface salinity. A comparison of the model results with observations shows a number of encouraging similarities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号