首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The microbial origin of Precambrian iron formations is debated due to the lack of direct fossil evidence. In order to reveal the genesis of ironstones under low-oxygen levels, integrative studies of sedimentology, petrography, mineralogy, and geochemistry were conducted on the intertidal to shallow subtidal ooidal and stromatolitic ironstones from the terminal Paleoproterozoic Chuanlinggou Formation (ca. 1.65–1.64 Ga) of North China, using microscopy, SEM, EDS, ICP-OES, ICP-MS and MC-ICP-MS techniques. Mineralogical study shows that the Fe-rich mineral is predominantly hematite that resulted from dehydration of amorphous Fe-oxyhydroxide during diagenesis. Petrographic observation indicates that the iron was oxidized and precipitated from seawater rather than sourced from terrestrial detritus. Basinward increases of the ironstone abundance, Eu anomalies (from 1.39 to 1.56) and δ56Fe values of the ironstones (from +0.5‰ to +1.0‰) suggest that the iron was mainly sourced from seafloor hydrothermal fluids, and partially oxidized and precipitated in shallow subtidal to intertidal environments. The common existence of Fe-oxide coated sheaths, spiral stalks, residual extracellular polymer substances (EPS) and other biogenic fabrics indicates that microaerophilic iron-oxidizing bacteria (FeOB) may have played an important role in precipitating the Chuanlinggou ironstones. The extremely low oxygen concentrations implied by the proliferation of microaerophilic FeOB in the shallow waters, the weak positive Ce anomalies (0.94–1.12) and low Mn concentrations in the ironstones are broadly consistent with the previous result of a Cr isotope study. Thus the establishment of a microaerophilic FeOB genetic model for the widespread Chuanlinggou ironstones in North China provides new insight into the origin of Precambrian iron formations and the redox evolution of ocean-atmosphere systems during the “Boring Billion”.  相似文献   

2.
Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ??600?m in a SW?CNE direction with chimneys occurring over a ??145-m depth interval, between ??1,690 and 1,545?m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2?C3?m in height, with some reaching 6?C7?m. Their ages (at time of sampling) fall broadly into three groups: <4, 23, and 35?years old. The chimneys typically occur near the base of individual fault-controlled benches on the caldera wall, striking in lines orthogonal to the slopes. Rarer are massive sulfide crusts 2?C3?m thick. Two main types of chimney predominate: Cu-rich (up to 28.5?wt.% Cu) and, more commonly, Zn-rich (up to 43.8?wt.% Zn). Geochemical results show that Mo, Bi, Co, Se, Sn, and Au (up to 91?ppm) are correlated with the Cu mineralization, whereas Cd, Hg, Sb, Ag, and As are associated with the dominant Zn-rich mineralization. The Cone site comprises the Upper Cone site atop the summit of the recent (main) dacite cone and the Lower Cone site that straddles the summit of an older, smaller, more degraded dacite cone on the NE flank of the main cone. Huge volumes of diffuse venting are seen at the Lower Cone site, in contrast to venting at both the Upper Cone and NW Caldera sites. Individual vents are marked by low-relief (??0.5?m) mounds comprising predominately native sulfur with bacterial mats. Vent fluids of the NW Caldera field are focused, hot (??300°C), acidic (pH????2.8), metal-rich, and gas-poor. Calculated end-member fluids from NW Caldera vents indicate that phase separation has occurred, with Cl values ranging from 93% to 137% of seawater values. By contrast, vent fluids at the Cone site are diffuse, noticeably cooler (??122°C), more acidic (pH?1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3?years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206?mM/kg at the Cone site); high CO2/3He; negative ??D and ??18OH2O for vent fluids; negative ??34S for sulfides (to ?4.6??), sulfur (to ?10.2??), and ??15N2 (to ?3.5??); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu?+?Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of ??magmatic?? mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (??2.5?km long), narrow (??300-m diameter) ??pipes,?? consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.  相似文献   

3.
Rates of reduction of Fe(III) oxyhydroxides by the bacterium Shewanella putrefaciens were measured as a function of the bacterial density and the Fe(III) substrate concentration. The results show that an earlier reported positive correlation between the solubility products (*Kso) and the maximum cell-specific reduction rates (vmax) of predominantly poorly crystalline Fe(III) oxyhydroxides also applies to insoluble and crystalline Fe(III) oxyhydroxides. The mineral solubilities were measured by a dialysis bag technique under acidic conditions (pH 1 up to 2.5) at 25 °C. Initial iron reduction rates by S. putrefaciens were determined in the presence of excess lactate as electron donor. In all cases, the microbial reduction rate exhibited saturation behavior with respect to the Fe(III) oxyhydroxide concentration. On a double logarithmic scale, the maximum rates vmax and the solubility products defined a single linear free energy relationship (LFER) for all the Fe(III) oxyhydroxides considered. The solubility provided a better predictor of vmax than the specific surface area of the mineral phase. A rate limitation by the electron transfer between an iron reductase and a Fe(III) center, or by the subsequent desorption of Fe2+ from the iron oxide mineral surface, are both consistent with the observed LFER.  相似文献   

4.
李军  孙治雷  黄威  崔汝勇 《地球科学》2014,39(3):312-324
原始的海水成分、基岩的组分及结构、热源性质等因素决定着现代海底热液喷口系统的流体成分, 同时, 各种地质构造背景下的岩浆脱气作用也在不同程度上影响热液流体的组成.热液流体一旦喷出海底, 就能形成不同类型的热液沉积体, 包括高温流体形成的金属硫化物或硫酸盐烟囱体、热液丘以及由低温弥散流及非浮力羽流形成的含金属沉积物堆积体.高温烟囱体的形成受控于海水和热液的混合比例, 常常表现为典型的两阶段模式, 即先形成环状硬石膏表层, 然后在其内部发生富Cu硫化物的沉淀.这一模式在更大尺度上也可以观察到, 如TAG热液丘.含金属沉积物遍布海底, 除热液羽流外, 金属硫化物烟囱体在氧化环境中氧化蚀变的产物也是其重要来源.生物的活动贯穿于现代热液过程的始终, 并在烟囱体的形成、分解以及羽流的扩散沉淀过程中起到了重要作用.当前, 热液生物矿化机理、Lost City型热液场以及超慢速扩张洋脊的有关研究是海底这一系统研究的热点, 前两者研究能使人们更好地理解地球早期的演化和生命的起源, 而后者的考察和研究能进一步丰富海底热液成矿理论, 并有助于寻找更大规模的热液矿体.   相似文献   

5.
The economic iron ore deposits of Egypt are located at Bahariya Oasis in the Lower Middle Eocene limestone. The main iron minerals are goethite, hematite, siderite, pyrite, and jarosite. Manganese minerals are pyrolusite and manganite. Gangue minerals are barite, glauconite, gibbsite, alunite, quartz, halite, kaolinite, illite, smectite, palygorskite, and halloysite. Geochemical comparison between the ore and the Nubia sandstone showed that the ore is depleted in the residual elements (Al, Ti, V, and Ni) and enriched in the mobile elements (Fe, Mn, Zn, Ba, and U) which indicates that the Bahariya iron ore is not a lateritic deposit despite the deep weathering in this area. On the other hand, the Nubia sandstone showed depletion in the mobile elements, which demonstrates the leaching process in the Nubia Aquifer. The presence of such indicator minerals as jarosite, alunite, glauconite, gibbsite, palygorskite, and halloysite indicate that the ore was deposited under strong acidic conditions in fresh water.Isotopic analyses of the uranium in the amorphous and crystalline phases of the ore, in the country rocks, and dissolved in the Nubia Aquifer water, all support the conclusion that U and Fe were precipitated together from warm ascending groundwater. U and Fe display strong co-variation in the ore, and the 234U/238U activity ratio of the newly precipitated U in the country rock and the leached component of U in the groundwater are identical. There is only slightly more uranium in the amorphous phase than in the crystalline and only a slightly lower 234U/238U activity ratio, suggesting that the iron in the two phases have a similar origin. Comparison of the excess 234U in the water and in the total ore leads to the conclusion that the precipitation of the U, and by inference the iron, occurred within the last million years. However, that both precipitation and leaching of U have occurred over the last 300,000 years is evidenced by the extreme 230Th/234U disequilibria observed in some of the samples. Some of the amorphous depositional events have been very recent, perhaps within the last 10,000 years.  相似文献   

6.
《China Geology》2020,3(2):269-282
Seabed fluid escape is active in the Makran subduction zone, Arabian Sea. Based on the new high-resolution 2D seismic data, acoustic blanking zones and seafloor mounds are identified. Acoustic blanking zones include three kinds of geometries: Bell-shaped, vertically columnar and tilted zones. The bell-shaped blanking zone is characterized by weak and discontinuous reflections in the interior and up-bending reflections on the top, interpreted as gas chimneys. Vertically columnar blanking zone is interpreted as side-imaged gas chimneys associated with focused fluid flow and topped by a seafloor anomaly expressed as a localized reflection discontinuity, which may together serve as a vent structure. Tilted acoustic blanking zone could be induced by accretionary thrust activity and rapid sedimentation surrounding slope. Seafloor mounds occur at the sites of bell-shaped acoustic blanking zone and may be associated with the material intrusion. Bottom simulating refectors (BSRs) are widely distributed and exhibit a series of characteristics including diminished amplitude, low continuity as well as local shoaling overlapping with these acoustic blanking zones. The large amount of gases dissociated from the gas hydrates migrated upwards and then arrived at the near-seafloor sediments, followed by the formation of the gas hydrates and hence the seafloor mound.  相似文献   

7.
Apparent overall equilibrium constants for the adsorption of Cd, Cu, Ni, Pb and Zn onto natural iron oxyhydroxides have been calculated from the partitioning of these trace metals in oxic lake sediments and the in situ measurement of trace metal concentrations in the associated pore waters. Such values obtained from lakes of various pH located on the Precambrian Shield, in the area of Sudbury, Ontario, are compared with equilibrium constants obtained for the adsorption of the trace metals onto iron oxyhydroxides in well-defined media.The field data are consistent with laboratory experiments reported in the literature and with theory. Both the influence of pH upon adsorption and the binding strength sequence observed for the field data agree with theory. At high sediment pH values, the partitioning of Cd, Ni and Zn between the pore waters and the natural iron oxyhydroxides is similar to those reported in the literature for the adsorption of these metals at low surface coverage onto amorphous iron oxyhydroxides in a NaNO3 medium; deviation from this simple model is however observed for Cu and Pb, presumably due to the competitive action of dissolved ligands. At low sediment pH values, the adsorption is much higher than predicted by the simple model and can be explained by the formation of ternary complexes with the iron oxyhydroxide surface.  相似文献   

8.
Petrological, geochemical, and Nd isotopic analyses have been carried out on rock samples from the Rainbow vent field to assess the evolution of the hydrothermal system. The Rainbow vent field is an ultramafic-hosted hydrothermal system located on the Mid-Atlantic Ridge characterized by vigorous high-temperature venting (∼365°C) and unique chemical composition of fluids: high chlorinity, low pH and very high Fe, and rare earth element (REE) contents (Douville et al., Chemical Geology 184:37–48, 2002). Serpentinization has occurred under a low-temperature (<270°C) retrograde regime, later overprinted by a higher temperature sulfide mineralization event. Retrograde serpentinization reactions alone cannot reproduce the reported heat and specific chemical features of Rainbow hydrothermal fluids. The following units were identified within the deposit: (1) nonmineralized serpentinite, (2) mineralized serpentinite—stockwork, (3) steatite, (4) semimassive sulfides, and (5) massive sulfides, which include Cu-rich massive sulfides (up to 28wt% Cu) and Zn-rich massive sulfide chimneys (up to 5wt% Zn). Sulfide mineralization has produced significant changes in the sulfide-bearing rocks including enrichment in transition metals (Cu, Zn, Fe, and Co) and light REE, increase in the Co/Ni ratios comparable to those of mafic Cu-rich volcanic-hosted massive sulfide deposits and different 143Nd/144Nd isotope ratios. Vent fluid chemistry data are indicative of acidic, reducing, and high temperature conditions at the subseafloor reaction zone where fluids undergo phase separation most likely under subcritical conditions (boiling). An explanation for the high chlorinity is not straightforward unless mixing with high salinity brine or direct contribution from a magmatic Cl-rich aqueous fluid is considered. This study adds new data, which, combined with the current knowledge of the Rainbow vent field, brings compelling evidence for the presence, at depth, of a magmatic body, most likely gabbroic, which provides heat and metals to the system. Co/Ni ratios proved to be good tools used to discriminate between rock units, degree of sulfide mineralization, and positioning within the hydrothermal system. Deeper units have Co/Ni <1 and subsurface and surface units have Co/Ni >1.  相似文献   

9.
At Lucky Strike near the Azores Triple Junction, the seafloor setting of the hydrothermal field in a caldera system with abundant low-permeability layers of cemented breccia, provides a unique opportunity to study the influence of subsurface geological conditions on the hydrothermal fluid evolution. Coupled analyses of S isotopes performed in conjunction with Se and Fe isotopes have been applied for the first time to the study of seafloor hydrothermal systems. These data provide a tool for resolving the different abiotic and potential biotic near-surface hydrothermal reactions. The δ34S (between 1.5‰ and 4.6‰) and Se values (between 213 and 1640 ppm) of chalcopyrite suggest a high temperature end-member hydrothermal fluid with a dual source of sulfur: sulfur that was leached from basaltic rocks, and sulfur derived from the reduction of seawater sulfate. In contrast, pyrite and marcasite generally have lower δ34S within the range of magmatic values (0 ± 1‰) and are characterized by low concentrations of Se (<50 ppm). For 82Se/76Se ratios, the δ82Se values range from basaltic values of near −1.5‰ to −7‰. The large range and highly negative values of hydrothermal deposits observed cannot be explained by simple mixing between Se leached from igneous rock and Se derived from seawater. We interpret the Se isotope signature to be a result of leaching and mixing of a fractionated Se source located beneath hydrothermal chimneys in the hydrothermal fluid. At Lucky Strike we consider two sources for S and Se: (1) the “end-member” hydrothermal fluid with basaltic Se isotopic values (−1.5‰) and typical S isotope hydrothermal values of 1.5‰; (2) a fractionated source hosted in subsurface environment with negative δ34S values, probably from bacterial reduction of seawater sulfate and negative δ82Se values possibly derived from inorganic reduction of Se oxyanions. Fluid trapped in the subsurface environment is conductively cooled and has restricted mixing and provide favorable conditions for subsurface microbial activity which is potentially recorded by S isotopes. Fe isotope systematic reveals that Se-rich high temperature samples have δ57Fe values close to basaltic values (∼0‰) whereas Se-depleted samples precipitated at medium to low temperature are systematically lighter (δ57Fe values between −1 to −3‰). An important implication of our finding is that light Fe isotope composition down to −3.2‰ may be explained entirely by abiotic fractionation, in which a reservoir effect during sulfide precipitation was able to produce highly fractionated compositions.  相似文献   

10.
Equilibrium path calculations have been used to model mixing between hot (350°C) hydrothermal solutions and ambient seawater, in an attempt to simulate mineral precipitation at seafloor vents. These calculations predict temperatures of precipitation, paragenetic sequence of minerals, and chemical composition of chimney deposits associated with vents on the seafloor at 21°N, EPR. Assuming sulfate-sulfide disequilibrium during mixing, the paragenetic sequence revealed is: chalcopyrite, anhydrite, pyrrhotite, pyrite, sphalerite, graphite, and barite. When sulfate-sulfide equilibria is permitted during mixing, however, reduction of small amounts of sulfate results in early precipitation of pyrite and a sequence of Cu-rich sulfide minerals (chalcopyrite-bornite-chalcocite-covellite). This sequence is analogous to that observed in thin chimney walls. The calculations indicate that sulfide mineral precipitation occurs in response to both cooling and change in composition of the hydrothermal solutions as a result of mixing. Varying the amount of mixing with respect to temperature, simulating conductive heating of seawater prior to mixing, results in only minor variations in the sequence and abundance of precipitated phases.Anhydrite precipitation during mixing occurs early, which is consistent with formation of an anhydrite leading edge of chimney structures. Similarly, extrapolation of warm spring data from Galapagos to zero SO4 concentration suggests anhydrite formation due to mixing with seawater beneath the seafloor, most likely below the level of reactive calcareous sediments. Subsequent interaction of the mixed hydrothermal solution with those sediments results in elevated and variable Ca concentrations estimated for end-member solutions from the Galapagos.Precipitation of Mg hydroxide sulfate hydrate in the walls of the vent chimneys at 21°N, EPR, occurs as a result of conductive heating of ambient seawater with only very minor amounts of mixing. In contrast, precipitation of amorphous silica in the vents must be due to conductive cooling of the hydrothermal solutions.Thus, incremental reaction calculations demonstrate that reactions occurring in and associated with venting ridge crest hydrothermal solutions can be effectively modeled using the thermodynamic data and reaction modeling codes available today. Departures from equilibrium required to accurately model the mixing process are easily accommodated and consistent with data from the vents and vent forming materials.  相似文献   

11.
G. P. Glasby  K. Notsu   《Ore Geology Reviews》2003,23(3-4):299-339
The Okinawa Trough is a heavily sedimented, rifted back-arc basin formed in an intracontinental rift zone. Submarine hydrothermal activity is located within the six back-arc rifts located in the middle and southern Okinawa Trough and its distribution is controlled principally by tectonic factors. Subduction of the Daito and Gagua Ridges beneath the Ryukyu Arc has resulted in fracturing of the brittle lithosphere beneath the Okinawa Trough. Hydrothermal activity is strongest in the volcanic arc-rift migration phenomenon (VAMP) area plus the JADE site and Southernmost Part of the Okinawa Trough (SPOT) area which form the prolongation of these two ridges. These areas are characterized by extremely high heat flow locally. Submarine hydrothermal fluids from the Okinawa Trough tend to be strongly influenced by interaction of the hydrothermal fluids with organic matter in the sediment resulting in high alkalinity and NH4+ concentrations of the fluids. The fluids also contain high concentrations of CO2 of magmatic origin. Submarine hydrothermal mineralization in the trough is diverse. The CLAM site consists principally of carbonate chimneys. Interaction of the hydrothermal fluid with organic matter in the sediment is particularly strong at this site. This is most probably a sediment-hosted deposit in which sulphide minerals have deposited within the sediment column leaving ‘spent ore-fluids’ to emerge at the seafloor. The JADE site consists of active and inactive sulphide–sulphate chimneys and mounds. The Zn–Pb-rich sulphides at this site contain the highest concentrations of Pb, Ag and Au so far recorded in submarine hydrothermal sulphide deposits. At Minami-Ensei Knoll and Hatoma Knoll, active and inactive chimneys consist principally of anhydrite and barite as a result of phase separation of the hydrothermal fluids beneath the seafloor. An intense black smoker has recently been discovered at Yonaguni Knoll in the SPOT area. If it is confirmed that sulphide mineralization is dominant at this site, this could be a highly prospective area. The most prospective areas for economic-grade minerals in the Okinawa Trough appear to be the JADE site and the SPOT area.  相似文献   

12.
The Cadamosto Seamount is an unusual volcanic centre from Cape Verde, characterised by dominantly evolved volcanics, in contrast to the typically mafic volcanic centres at Cape Verde that exhibit only minor volumes of evolved volcanics. The magmatic evolution of Cadamosto Seamount is investigated to quantify the role of magma-crust interaction and thus provide a perspective on evolved end-member volcanism of Cape Verde. The preservation of mantle source signatures by Nd–Pb isotopes despite extensive magmatic differentiation provides new insights into the spatial distribution of mantle heterogeneity in the Cape Verde archipelago. Magmatic differentiation from nephelinite to phonolite involves fractional crystallisation of clinopyroxene, titanite, apatite, biotite and feldspathoids, with extensive feldspathoid accumulation being recorded in some evolved samples. Clinopyroxene crystallisation pressures of 0.38–0.17 GPa for the nephelinites constrain this extensive fractional crystallisation to the oceanic lithosphere, where no crustal assimilants or rafts of subcontinental lithospheric mantle are available. In turn, magma-crust interaction has influenced the Sr, O and S isotopes of the groundmass and late crystallising feldspathoids, which formed at shallow crustal depths reflecting the availability of oceanic sediments and anhydrite precipitated in the ocean crust. The Nd–Pb isotopes have not been affected by these processes of magma-crust interaction and hence preserve the mantle source signature. The Cadamosto Seamount samples have high 206Pb/204Pb (>19.5), high εNd (+6 to +7) and negative Δ8/4Pb, showing affinity with the northern Cape Verde islands as opposed to the adjacent southern islands. Hence, the Cadamosto Seamount in the west is located spatially beyond the EM1-like component found further east. This heterogeneity is not encountered in the oceanic lithosphere beneath the Cadamosto Seamount despite greater extents of fractional crystallisation at oceanic lithospheric depths than the islands of Fogo and Santiago. Our data provide new evidence for the complex geometry of the chemically zoned Cape Verde mantle source.  相似文献   

13.
The distribution of iron in a 6-m core of post-glacial sediment from an oligotrophic lake (Connistonwater, England) was determined, principally by Mossbauer spectroscopy on dried samples. The immediate post-glacial deposits contain 4.8 wt. % of iron, with a Fe2+; Fe3+ ratio ~- 4. The iron there is predominantly in the form of chlorite, but there are small amounts in hematite and illite. The distribution of iron is different, and very variable in the recent sediments (~ < 13,000 BP), which contain 25–35 per cent organic matter and 5.2 wt. % of iron relative to the inorganic fraction. Typically half the iron is present there as chlorite, and the rest is ferric, mostly in the form of an amorphous gel which is also present in undried samples. To explain the observed ferrous:ferric profile, it is proposed that the latter includes iron which was once mobile, having been leached from the Fe2+-bearing clays under reducing conditions in the soils of the drainage basin, or in the sediment itself. It was subsequently precipitated as ferric hydroxide on contact with the oxic lake water. In contrast, the ferrous iron in the sediments is immobile iron, which remained locked in the chlorite phase of the clay particles as they were carried from soil to sediment intact.All the sediments are rather inhomogeneous. Chlorite, and especially hematite, are mechanically concentrated in pink varves in the immediate post-glacial deposits. In the partly inorganic sediments, the concentration of ferrous iron (chlorite) is approximately uniform, but the ferric content may differ by a factor of five between regions only a few millimeters apart.  相似文献   

14.
This study investigated possible geochemical reactions during titration of a contaminated groundwater with a low pH but high concentrations of aluminum, calcium, magnesium, manganese, and trace contaminant metals/radionuclides such as uranium, technetium, nickel, and cobalt. Both Na-carbonate and hydroxide were used as titrants, and a geochemical equilibrium reaction path model was employed to predict aqueous species and mineral precipitation during titration. Although the model appeared to be adequate to describe the concentration profiles of some metal cations, solution pH, and mineral precipitates, it failed to describe the concentrations of U during titration and its precipitation. Most U (as uranyl, UO22+) as well as Tc (as pertechnetate, TcO4) were found to be sorbed and coprecipitated with amorphous Al and Fe oxyhydroxides at pH below ∼5.5, but slow desorption or dissolution of U and Tc occurred at higher pH values when Na2CO3 was used as the titrant. In general, the precipitation of major cationic species followed the order of Fe(OH)3 and/or FeCo0.1(OH)3.2, Al4(OH)10SO4, MnCO3, CaCO3, conversion of Al4(OH)10SO4 to Al(OH)3,am, Mn(OH)2, Mg(OH)2, MgCO3, and Ca(OH)2. The formation of mixed or double hydroxide phases of Ni and Co with Al and Fe oxyhydroxides was thought to be responsible for the removal of Ni and Co in solution. Results of this study indicate that, although the hydrolysis and precipitation of a single cation are known, complex reactions such as sorption/desorption, coprecipitation of mixed mineral phases, and their dissolution could occur simultaneously. These processes as well as the kinetic constraints must be considered in the design of the remediation strategies and modeling to better predict the activities of various metal species and solid precipitates during pre- and post-groundwater treatment practices.  相似文献   

15.
Talc, kerolite–smectite, smectite, chlorite–smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite–smectite to smectite-rich kerolite–smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite–smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite–smectite with lower crystalline perfection as the proportion of smectite layers in kerolite–smectite increases.Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite–smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250 °C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200–250 °C) phase forming deep within the sediment (~ 0.8 m). Chlorite and chlorite–smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150–200 °C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite–smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite–smectite are hydrothermal alteration products of the background turbiditic sediment.  相似文献   

16.
The Lost City Hydrothermal Field at 30°N, near the Mid-Atlantic Ridge, is an off-axis, moderate temperature, high-pH (9-10.8), serpentinite-hosted vent system. The field is hosted on ∼1.5 Ma crust, near the summit of the Atlantis Massif. Within the field, actively venting carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the chimneys and vent fluids is controlled by serpentinization reactions between seawater and underlying peridotite. Mixing of <40-91 °C calcium-rich vent fluids with seawater results in the precipitation of variable mixtures of aragonite, calcite, and brucite. The resultant deposits range from tall, graceful pinnacles to fragile flanges and delicate precipitates that grow outward from fissures in the bedrock. In this study, mineralogy, petrographic analyses, major and trace element concentrations, and Sr isotopic compositions are used to propose a model for the growth and chemical evolution of carbonate chimneys in a serpentinite-hosted environment. Our results show that nascent chimneys are characterized by a porous, interlacing network of aragonite, and brucite minerals that form extremely fragile structures. The chemistry of these young deposits is characterized by ∼10 wt% Ca and up to 27 wt% Mg, extremely low trace metal concentrations, and 87Sr/86Sr isotope ratios near 0.70760. During aging of the chimneys, progressive reactions with seawater result in the dissolution of brucite, the conversion of aragonite to calcite, and infilling of pore spaces with calcite. The oldest chimneys are dominated by calcite, with bulk rock values of up to 36 wt% Ca and <1 wt% Mg. These older structures contain higher concentrations of trace metals (e.g., Mn and Ti), and have Sr isotope ratios near seawater values (0.70908). Exposed ultramafic rocks are prevalent along the Mid-Atlantic, Arctic, and Indian Ocean ridge networks and it is likely that other Lost City-type systems exist.  相似文献   

17.
Black smoker chimneys and biological vent communities have been identified at many sites on the deep seafloor, particularly along oceanic spreading centers. We report the largest and oldest known, microbe-rich sub-meter-sized black smoker chimneys and mounds from a 1.43 billion-year old sulfide deposit in a continental graben in northern China. These chimneys are especially well preserved, with characteristic morphology, internal textures and internal cylindrical mineralogical zonation. Four main types of chimneys are distinguished on textural and mineralogical criteria, exhibiting either Zn–Fe-sulfide or Pb–Zn–Fe-sulfide internal cylindrical mineralogical zones. The chimneys mark vent sites in submarine grabens indicating focused flow-venting processes. The fossil chimneys have mineralogical and geological evolutionary features similar to their counterparts on the modern seafloor and other submarine hydrothermal vents. Black smoker vent fluids and seafloor tectonism played important roles for formation of the massive sulfide deposits in the Mesoproterozoic.We also report the first known, remarkably diverse assemblage of fossil microbialites from around and inside Precambrian vent chimneys, demonstrating that Proterozoic life flourished around submarine hot vents and deep within the chimney vent passages. Filamentous, spherical, rod, and coccus-shaped fossil microbes are preserved preferentially on sulfide precipitates. Based on the depth and setting of the fossil biota, the organisms that produced the microbialites were likely sulfate-reducing chemosynthetic and thermophyllic microbes. Textural and mineralogical evidence shows that biomineralization processes enhanced chimney growth and sulfide precipitation.Close association of microorganisms with sulfide chimneys in modern deep-sea hydrothermal vents and younger ophiolites has sparked speculation about whether life may have originated at similar vents. However, little is known about fossil equivalents of vent microfossils and black smoker chimneys from Earth's early evolution. The fossilized microorganisms from the Gaobanhe black smoker chimney sulfide deposits include thread-like filaments with branching and twisted forms and preserved organic carbon, representing fossilized remnants of microbial mats metabolized at high temperatures characteristic of venting fluids. The preservation of fossil microorganisms provides evidence that microbial populations were closely associated with black smoker chimneys in Earth's early history. The microbial population clearly constitutes the site for mediating mineral formation. These ancient microbial fossils lead to a much better understanding of early life on the deep seafloor. The discovery of the Mesoproterozoic microfossils within black-smoker hydrothermal chimneys indicates that hydrothermal activity around sea-floor vents supported dense microbial communities, and supports speculation that vent sites may have hosted the origin of life.  相似文献   

18.
The reactivity of iron(III) oxyhydroxides as reflected by their tendency to dissolve is of great importance in the redox cycling of iron and the bioavailability of iron to phytoplankton in natural waters. In this study, various iron(III) oxyhydroxides were produced by oxygenation of iron(II) in the presence of solutes, such as phosphate, sulfate, bicarbonate, valeric acid, TRIS, humic and fulvic acids, and in the presence of minerals, such as bentonite and δ-Al2O3 under conditions encountered in aquatic systems. The reactivity of the different iron(III) oxyhydroxides was subsequently assessed by means of a reductive dissolution using ascorbate and non-reductive dissolution using HQS (8-hydroxyquinoline-5-sulfonic acid) or oxalate. The experimental results show that the iron(III) oxyhydroxides with a low degree of polymerization exhibit higher reactivity than those with a high degree of polymerization or with high crystallinity. The quantity of active surface sites and the coordination arrangement of the functional groups at the surface of the iron(III) oxyhydroxides, especially the extent of the endstanding -OH groups per iron(III) ion determine the reactivity of iron(III) oxyhydroxides toward dissolution.Surfaces, such as clay and aluminum oxides, not only accelerate the oxygenation reaction of iron(II), but also induce the formation of iron(III) oxyhydroxides which are more active toward the dissolution reactions. Polymerization of iron(III) oxyhydroxides on the surfaces occurs predominantly in two dimensions rather than in three dimensions.In a laboratory experiment, the iron(III) oxyhydroxide formed in the presence of TRIS can be reduced by fulvic acid in a closed system under the following conditions: Fe(OH)3(s) 0.01 g/l, fulvic acid 5 mg/l, pH 7.5, 20°C. The kinetics of the reaction depend on the reactivity of iron(III) oxyhydroxide and reducing power of fulvic acid. Although reductants other than fulvic acid may be of importance in antural waters, this result provides the laboratory evidence that the >FeIII-OH/Fe(II) is able to act as an electron transfer mediator for the oxidation of natural organic substances, such as fulvic acid, by molecular oxygen either in the absence of microorganisms or as a supplement to microbial activity.  相似文献   

19.
海底硫化物黑烟囱典型结构构造及其成因意义   总被引:4,自引:0,他引:4  
在已发现的现代海底黑烟囱中基本都发育分带性构造、通道构造、胶状构造、多孔和填充构造、交代构造、枝状构造等,这些构造为硫化物烟囱的典型构造,它们记录了硫化物烟囱的形成过程和每个阶段的特征,是鉴别硫化物烟囱构造的重要特征。不同类型烟囱的形成除了与其围岩相关外,也与烟囱演化的成熟度相关。弥散式喷射作用(diffuser)是与烟囱构造相似的常在丘体中发育的另一重要构造,与烟囱构造不同的是弥散式喷射缺乏象烟囱那样的轴向中央通道,热液与海水的混合有严格的范围。烟囱与弥散式喷射作用是丘体上部形成的主要机制。在现代陆上保存的地史时期的块状硫化物矿床中,陆续找到了遗留下来的烟囱构造或烟囱残片(如乌拉尔、皮尔巴拉、爱尔兰、高板河等),为块状硫化物矿床的黑烟囱形成机制提供了直接的证据。  相似文献   

20.
The Ringerike Group is a meandering fluviatile succession which is about 60% red. Most of the red zones are formed of mudrocks and siltstones and correspond to the fine members of fining-upwards cyclothems. The majority of coarse members are drab coloured.Textural studies of thin and polished sections show that the red colour is caused by finely crystalline hematite as matrix and grain-coatings. This hematite apparently crystallized post-depositionally. Hematite also occurs in other textural sites: within altered phyllosilicates, as detrital grains and as totally pseudomorphed phyllosilicates. This, and the lack of consistency between colour and clay mineralogy, suggests that the red beds have had a long and complex diagenetic history.Iron analyses indicate that the red beds are enriched in Fe3+ and total iron (FeO) by about 1%. This is thought to have been derived from the pre-depositional weathering of iron minerals and introduced into the sediments as amorphous iron hydroxide or iron-bearing clays. Crystallization of iron hydroxide under oxidizing conditions and the post-depositional alteration of iron-silicates and oxides is thought to be responsible for the formation of the red beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号