首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
New paleomagnetic measurements have been made on Tertiary volcanic rocks from northeast Jalisco, Mexico (20.7°N, 102.3°W). The pole position obtained from this study (68°N, 181°E) is consistent with two other Oligocene poles from Mexico. Mexican poles form a coherent group which differs from poles of similar ages from North America. This suggests a possible tectonic rotation of the sampling sites of Mexico with respect to “stable” North America.  相似文献   

2.
塔里木地块侏罗、白垩纪的古地磁   总被引:5,自引:0,他引:5       下载免费PDF全文
本文对塔里木地块西北缘库车、拜城一带中新生代剖面进行了古地磁研究。库车与拜城两剖面具有不同方向产状,经产状校正之后,均为同一方向,表明磁性是在第三系褶皱之前获得的。热退磁结果表明500℃之前为现代地磁场方向,解阻温度为675℃,说明磁性载体为赤铁矿。 古地磁结果表明,塔里木地块在晚侏罗—晚白垩世之间没有经历大规模的构造运动。有可能自晚白垩世之后相对西伯利亚地块向北东方向移动过  相似文献   

3.
Seamount magnetic anomaly inversions as well as DSDP paleomagnetic and equatorial sediment facies data constrain a paleomagnetic pole for the Pacific plate of Late Eocene age. The location of the pole at 77.5°N, 21.2°E implies 12.5 ± 1.6° of apparent polar wander for the Pacific plate during the last 41 ± 5 m.y. The Late Eocene pole is significantly different from the Pacific Maastrichtian pole at the 95% confidence level and indicates 7.2° of apparent polar motion of the Pacific between 69 and 41 m.y. B.P. The data source locations for the Late Eocene pole are scattered over a large area of the North Pacific and thus the consistency of the data supports the hypothesis that the north central Pacific plate has been rigid since the Eocene. The agreement of the Late Eocene pole with the motion predicted for the Pacific from hotspot models suggests that relative motion between the spin axis and hotspots has been small since that time. Additionally, this finding dictates that the significant amounts of hotspot versus spin axis motion inferred by other authors to have occurred since the Cretaceous must have instead occurred at a faster rate and concluded before the Eocene.  相似文献   

4.
Paleomagnetic samples from the Nolichucky Formation (Late Cambrian), sampled at two sites in the Valley and Ridge Province of east Tennessee, yield a possibly penecontemporaneous characteristic magnetization that appears to reside in detrital magnetite. The paleomagnetic pole positions are “Paleozoic”, but differ: site I, lat. 41°N, long. 109°E,dp = 1°, dm = 2°; site II, lat. 39°N, long. 131°E,dp = 4°, dm = 7°. The difference in poles reflects a significant difference in declination between the site-mean directions, and this declination difference probably reflects relative tectonic rotation as the sites are in different thrust sheets. The paleontologic age of both sections is exceptionally well-constrained as they are sampled across an abrupt “biomere boundary” between contrasting trilobite faunas. Comparison of these results with paleomagnetic data from coeval strata elsewhere in North America reveals gross discrepancies, so that at least some of the published data must reflect remagnetization and/or tectonic rotation.  相似文献   

5.
A paleomagnetic and potassium-argon dating investigation has been carried out on a 530-km-long dike system which transects the western Iberian Peninsula in a northeasterly direction. The K-Ar age determinations were made on mineral separates exclusively. They range between 160 and 200 Ma and the authors suppose that this reflects the actual time interval of the intrusion, in accord with previous results. The paleomagnetic pole derived from 12 sites regularly distributed along the dike (71°N, 236°E) coincides well with other Mesozoic paleomagnetic poles from the western Africa. A contemporaneous pole from stable Europe is tentatively deduced from African and North American Late Triassic/Early Jurassic poles using different reconstruction models around the North Atlantic Ocean. The divergence between this pole and the Iberian pole corresponds to the result obtained for Permian poles.  相似文献   

6.
We have carried out paleomagnetic studies of the Upper Vendian sedimentary rocks from the Bashkirian Meganticlinorium (Southern Ural). The rocks were sampled at three localities spread over more than 100 km. Totally, more than 300 samples were collected from about 40 sampling sites. Stepwise thermal demagnetization up to 700°C revealed a stable component of magnetization of either polarity in 25 sites. The fold test and the reversal test for this component are positive, which is usually regarded as a sound argument in favor of the primary origin of magnetization. However, the Basu paleomagnetic pole (longitude 187.3°E, latitude 1.1°N) is located near the Late Ordovician-Early Silurian segment of the apparent polar wander path for Baltica, which might indicate a Paleozoic remagnetization of Vendian rocks. In this work we analyze different interpretations of the obtained results and evaluate the reliability of the Late Riphean and Vendian paleomagnetic data for Baltica.  相似文献   

7.
拉萨地块林周盆地白垩系红层的古地磁数据一直都有较大争议.过去认为磁倾角变浅可能是造成这些分歧的主要原因.我们在林周盆地设兴组背斜两翼进行了系统的古地磁采样,15个采样点的特征剩磁分量在倾斜校正和倾伏褶皱校正后平均方向为D=339.3°,I=22.9°(α_(95)=5.1°).特征剩磁分量在大约69%展开时获得最大集中,表明其为同褶皱重磁化;此时平均方向为D=339.1°,I=27.3°(α_(95)=4.1°),对应的古地磁极为65.4°N,327.5°E(A_(95)=3.5°),参考点29.3°N/88.5°E的古纬度为15.0°N±3.5°.薄片镜下分析显示赤铁矿为次生矿物,岩石磁组构(AMS)也表现为过渡型构造变形组构.样品的特征剩磁方向应为重磁化的结果,E/I(elongation vs inclination)校正法显示特征剩磁方向并没有发生倾角变浅.根据区域构造,重磁化时代约为72.4±1.8 Ma到64.4±0.6 Ma.综合考虑拉萨地块东西部的古地磁数据以及地震层析成像资料后我们认为,碰撞前拉萨地块大约呈NW-SE向准线性分布,并处于~10°N-15.0°N;自~70 Ma以来,拉萨地块与稳定欧亚大陆之间至少存在1200±400 km(11.1°±3.5°)的南北向构造缩短量;印度大陆与欧亚大陆的碰撞不应晚于55 Ma.  相似文献   

8.
For long time the western-central Mexico has been affected by oblique subduction caused by Farallon plate beneath North America. As result, smaller plates (e.g. Cocos Plate), several fault systems outlining crustal blocks (e.g. Michoacán block) and magmatic arcs (e.g. Paleocene-Early Oligocene magmatism and the Trans-Mexican Volcanic Belt) were developed. Still, no paleomagnetic data are available for Oligocene and Miocene. The principal aim of this study is to evaluate whether the tectonic rotations and relative motions of these blocks occurred before the Miocene. Here, we report a detailed rock-magnetic and paleomagnetic results from Tecalitlan area, located in the Michoacán block. Sixteen sites (about 150 oriented samples) were collected including one radiometrically dated diabase dike (35.0 ± 1.8 Ma). Rock-magnetic experiments permitted identification of magnetic carriers and assessment of the paleomagnetic stability. Continuous susceptibility measurements vs temperature in most cases yield reasonably reversible curves with Curie points close to that of magnetite. Reliable paleomagnetic directions were obtained for 12 sites. Inclination I and declination D of the mean paleomagnetic direction obtained in this study are I = 33.1°, D = 345.0°, and Fisherian statistical parameters are k = 25, α95 = 8.9°. The corresponding mean paleomagnetic pole position is Plat = 75.7°, Plong = 166.6°, K = 31, A95 = 8.0°. The mean inclination is in reasonably good agreement with the expected value, as derived from reference poles for the stable North America. Magnetic declination is not significantly different from that expected which is in disagreement with a counterclockwise tectonic rotation of about 20° previously reported for the studied area. Based on paleomagnetic results obtained in this study compiled with those currently available from the Michoacán Block, we propose a simple model suggesting that sometime in Eocene epoch the convergence vector of the Farallon plate relative to North America plate was normal to the trench before reaching an actual oblique convergence.  相似文献   

9.
石炭纪末古地理图   总被引:8,自引:0,他引:8       下载免费PDF全文
过去发表的石炭纪古地理重建图存在着不少问题,特别是对亚洲各板块位置的认识上。例如,过去的重建图中华北和华南在石炭纪末都处于北半球40°—50°纬度带,但是,地层古生物资料清楚地表明,它们当时处于热带和亚热带环境。这是因为在编制上述古地理图时(70年代末和80年代初),华南和华北等东亚和东南亚地块还没有可靠的古地磁数据,因而这一地区的地块的位置是由距它们最近的西伯利亚地台的地极位置推算出来的。但是,由于这些地块和西伯利亚地台自石炭纪以来曾发生过相对运动,因此,上述作法是不合理的  相似文献   

10.
Lower Cretaceous red sedimentary rocks from the depositional basin of East Qilian fold belt have been collected for a paleomagnetic study. Stepwise thermal demagnetization reveals two or three components of magnetization from dark red sandstones. Low-temperature magnetic component is consistent with the present Earth Field direction in geographic coordinates. High-temperature magnetic components are mainly carried by hematite. The mean pole of 19 sites for high-temperature magnetic components after tilt-correction is λ=62.2°N, φ=193.4°E, A95=3.2°, and it passes fold tests at 99% confidence level and reversal tests at 95% confidence level. The paleopole is insignificantly different from that of Halim et al. (1998) from the same sampling area at the 95% confidence level. Compared with paleomagnetic results for North China, South China, and Eurasia, our results suggest that no significant relative latitudinal displacement has taken place between Lanzhou region and these blocks since Cretaceous time. Remarkably, the pole of Lanzhou shows a 20° clockwise rotation with respect to those of North China, South China, and Eurasia. Geological information indicates that the crustal shortening in the western part of Qilian is greater than that in eastern part. In this case, the clockwise rotation of sampling area was related to India/Eurasia collision, and this collision resulted in a left-lateral strike-slip motion of the Altun fault in north Tibetan Plateau after the Cretaceous.  相似文献   

11.
用热退磁辅以交变退磁方法对采自塔里木盆地阿克苏地区四石厂剖面47个采样点518块标本进行了逐步磁清洗和测试。由本征剩磁方向统计得到塔里木地台晚古生代的古地磁极位置(晚泥盆世φ=10.5°S、λ=151.2°E;晚石炭世φ=52.2°N、λ=179.5°E;早二叠世φ=56.5°N,λ=190.1°E)。古地磁结果表明:塔里木地台在晚古生代是北方大陆的块体之一。从晚石炭世至早二叠世塔里木地台已和北方的哈萨克斯坦板块、西伯利亚地台、俄罗斯地台等连成一片,并且从中生代以来它们之间的相对位置没有发生过大规模的变动  相似文献   

12.
We have obtained additional evidence for the Early Carboniferous paleomagnetic field for cratonic North America from study of the Barnett Formation of central Texas. A characteristic magnetization of this unit was isolated after thermal demagnetization at four sites (36 samples) out of eight sites (65 samples) collected. The mean direction of declination = 156.3°, inclination = 5.8° (N = 4 ,k = 905 , α95 = 3.0°), corresponds to a paleomagnetic pole position at lat. = 49.1°N,long. = 119.3°E (dp = 1.5° , dm = 3.0°). Field evidence suggests that characteristic magnetization was acquired very early in the history of the rock unit whereas the rejected sites are comprised of weakly magnetized limestones dominated by secondary components near the present-day field direction. Comparison of the Barnett pole with other Early Carboniferous (Mississippian) paleopoles from North America shows that it lies close to the apparent polar wander path for stable North America and that the divergence of paleopoles from the Northern Appalachians noted previously for the Devonian persisted into the Early Carboniferous. We interpret this difference in paleopoles as further evidence for the Northern Appalachian displaced terrain which we refer to here as Acadia, and the apparent coherence of Late Carboniferous paleopoles as indicating a large (~1500 km) motion of Acadia with respect to stable North America over a rather short time interval in the Carboniferous.  相似文献   

13.
Paleomagnetic results are reported from 13 sites of red beds of Early Devonian age from Central Iran. Detailed paleomagnetic analyses were carried out. Two types of partial progressive demagnetization were applied, one using alternating magnetic fields, the other heating. These procedures resulted in the detection of the characteristic remanences with a mean direction with D = 24.2°, I = 1.3°95 = 10.1°). The paleomagnetic pole is located at 51.3°N, 163.7°W. If one shifts the Iranian landmass to its most likely position in the Gondwana configuration, then the position of the paleomagnetic pole coincides with the alternative polar wander path [14,15] which crossed South America in early Middle Paleozoic times.  相似文献   

14.
The paleomagnetic study of the Lower Ordovician and Cambrian sedimentary rocks exposed on the Narva River’s right bank revealed a multicomponent composition of natural remanent magnetization. Among four distinguished medium- and high-temperature magnetization components, the bipolar component, which carries the reversal test, is probably the primary component and reflects the geomagnetic field direction and variations during the Late Cambrian and Early Ordovician. The pole positions corresponding to this component have coordinates 22°N, 87°E (dp/dm = 5°/6°) for the Late Cambrian, and 18°N, 55°E (dp/dm = 5°/7°) for the Early Ordovician (Tremadocian and Arenigian). Together with the recently published paleomagnetic poles for the sections of the Early Ordovician in the Leningrad Region and the series of poles obtained when the Ordovician limestones were studied in Sweden, these poles form new key frameworks for the Upper Cambrian-Middle Ordovician segment of the apparent polar-wander path (APWP) for the Baltica. Based on these data, we propose a renewed version of the APWP segment: the model of the Baltica motion as its clockwise turn by 68° around the remote Euler pole. This motion around the great circle describes (with an error of A95 = 10°) both variations in the Baltic position from 500 to 456 Ma ago in paleolatitude and its turn relative to paleomeridians. According to the monopolar components of natural remanent magnetization detected in the Narva rocks, the South Pole positions are 2°S, 351°E (dp/dm = 5°/9°), 39°S, 327°E, (dp/dm = 4°/7°), and 42°S and 311°E (dp/dm = 9°/13°). It is assumed that these components reflect regional remagnetization events in the Silurian, Late Permian, and Triassic.  相似文献   

15.
鄂尔多斯地块构造演化的古地磁学研究   总被引:15,自引:0,他引:15       下载免费PDF全文
鄂尔多斯地块与中朝地台其它地区相同时代地层的古地磁结果基本一致表明:晚二叠世以来,中朝地台经历了从低纬度(19°左右)向中纬度的北移过程,并伴有50°左右的逆时针旋转;晚二叠世—中三叠世地台北移10°(1000km)左右,而方位基本未变;中三叠世—中侏罗世主要发生50°左右的逆时针旋转,而北向位移不明显,这一旋转可能与杨子地台和中朝地台碰撞拼合有关,或者说是印支运动在该地区的反应,中侏罗世—早白垩世地块已基本和现代位置一致  相似文献   

16.
We report detailed rock-magnetic and paleomagnetic directional data from 35 lava flows (302 standard paleomagnetic cores) sampled in the Central-Northern region of Uruguay in order to contribute to the study of the paleosecular variation of the Earth’s magnetic field during early Cretaceous and to obtain precise Cretaceous paleomagnetic pole positions for stable South America. The average unit direction is rather precisely determined from 29 out of 35 sites. All A95 confidence angles are less than 8°, which points to small within-site dispersion and high directional stability. Normal polarity magnetizations are revealed for 19 sites and 10 are reversely magnetized. Two other sites yield well defined intermediate polarities. The mean direction, supported by a positive reversal test is in reasonably good agreement with the expected paleodirection for Early Cretaceous stable South America and in disagreement with a 10° clockwise rotation found in the previous studies. On the other hand, paleomagnetic poles are significantly different from the pole position suggested by hotspot reconstructions, which may be due to true polar wander or the hotspot motion. Our data suggest a different style of secular variation during (and just before) the Cretaceous Normal Superchron and the last 5 Ma, supporting a link between paleosecular variation and reversal frequency.  相似文献   

17.
Pacific plate equatorial sediment facies provide estimates of the northward motion of the Pacific plate that are independent of paleomagnetic data and hotspot tracks. Analyses of equatorial sediment facies consistently indicate less northward motion than analyses of the dated volcanic edifices of the Hawaiian-Emperor chain. The discrepancy is largest 60–70 Ma B.P.; the 60- to 70-Ma equatorial sediment facies data agree with recent paleomagnetic results from deep-sea drilling on Suiko seamount [1] and from a northern Pacific piston core [2]. Equatorial sediment facies data and paleomagnetic data, combined with K-Ar age dates along the Emperor chain [3], indicate a position of the spin axis at 65 Ma B.P. of 82°N, 205°E in the reference frame in which the Pacific Ocean hotspots are fixed. This pole agrees well with the position of the spin axis in the reference frame in which the Atlantic Ocean hotspots and the Indian Ocean hotspots are fixed [4,5], supporting the joint hypotheses that (1) the Pacific Ocean hotspots are fixed with respect to the hotspots in other oceans, (2) the hotspots have shifted coherently with respect to the spin axis, and (3) the time average of the earth's magnetic field 65 Ma B.P. was an axial geocentric dipole. Global Neogene paleomagnetic data suggest that a shift of the mantle relative to the spin axis has been occurring during the Neogene in the same direction as the shift between 65 Ma B.P. and the present. All data are consistent with a model in which the hotspots (and by inference the mantle) have shifted with respect to the spin axis about a fixed Euler pole at a constant rate of rotation for the last 65 Ma.  相似文献   

18.
The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation–Inclination (E–I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian–Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian–Triassic (P–Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that ~250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P–Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of “stable” Europe (the East European platform and West European plate).  相似文献   

19.
蛇绿岩中枕状玄武岩的古地磁学研究可为古海洋的恢复与演化提供定量化依据.黑龙江省饶河地区中侏罗世枕状玄武岩的岩石学、岩石磁学研究表明,该岩石具备水下喷出特点,发育辉长结构,载磁矿物为磁铁矿.17个采点181块样品的热退磁实验表明,中侏罗世枕状玄武岩记录了高温分量和中温分量,前者为熔岩喷发记录的原生剩磁方向,平均方向D/I=59.4°/46.3°,α95=6.8°,对应的极位置为40.3°N,224.6°E,A95=7°;后者可能为晚侏罗世—早白垩世岩浆热事件的叠加,平均方向D/I=55.4°/60.6°,α95=3.9°,对应的极位置为50.8°N,210.6°E,A95=5.2°.综合考虑区域地质背景,将这一结果与邻区同时代的古地磁数据对比,推测在中侏罗世之前,在饶河杂岩与佳木斯地体之间存在一定规模的海域,与现今日本海相似;早白垩世时期,该海域封闭,饶河杂岩与华北、西伯利亚板块在动力学上已成为整体.  相似文献   

20.
The paleomagnetism of the Late Cretaceous Poços de Caldas alkaline complex (46.6°W, 21.9°S) was investigated through 42 oriented cores from seven sites. Six sites, reversed relative to the present magnetic field of the Earth, yield a pole at 127°W, 82°S (dp = 8°,dm = 13°). This pole is located close to other Late Cretaceous poles for South America obtained by Creer [1] from untreated paleomagnetic samples. The results are significantly different from those for the nearby Early Cretaceous Serra Geral basalt but close to the Triassic pole for South America. The polar wandering path for South America for the Mesozoic seems to be more complicated than anticipated. The available paleomagnetic information may not yet be precise enough to determine the time of opening of the Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号