首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspects of the crustal evolution of three areas in the Archaean block of southern West Greenland are compared and new Rb and Sr isotope data are presented for one of them (inner Godthåbsfjord). It is concluded that major differences resulted from variations in crustal thickness with the early Archaean Amîtsoq gneisses controlling later events.  相似文献   

2.
3.
Results are reported from palaeomagnetic samples collected in two traverses across the coast-parallel dyke swarm of southern Greenland. This swarm probably resulted as the consequence of initial rifting between Greenland and Labrador, and a reversal of magnetisation has been found which is correlated on the basis of KAr age determinations (~168 m.y.) with the Mateke event of the Middle Jurassic (Bajocian). All of fifteen sites show significant grouping of directions after a.f. cleaning; three have anomalous directions of magnetisation while the remainder (nine normal, three reversed) give a combined mean direction of D = 336°, I = 66° (α95 = 4.6°) with a palaeomagnetic pole at 191°E, 72°N. The dykes exhibit the same corelation between polarity and deuteric oxidation state as that found in Tertiary volcanics. There is a systematic change in magnetisation across the dyke swarm in south Greenland from normal to anomalous to reversed directions; this is interpreted as due to lateral migration of the response to the regional stress field with time. The pole position lies in the vicinity of Jurassic poles from North America after closing the Labrador Sea according to the reconstruction of Bullard, Everett and Smith, but the scatter of these latter poles precludes a confirmation of this reconstruction for Middle Jurassic and earlier times.  相似文献   

4.
Petrographic and chemical evidence suggests that boulders from a conglomeratic unit in the Isua supracrustal succession were derived by the erosion of an acid volcanogenic sediment. Six samples of the boulders and surrounding matrix yield a Rb-Sr whole rock isochron with a slope corresponding to an age of 3860 ± 240 m.y. (2 sigma error), but consideration of the initial87Sr/86Sr ratio constrains the possible age of formation of 3710 ± 900 m.y. This is in general agreement with a published Pb/Pb age of 3760 ± 70 m.y. on Isua banded ironstones.Pb isotope compositions as well as highly fractionated, heavy element depleted, rare earth element abundance patterns for the boulders suggest that their igneous precursors were derived from a source region with a similar geochemical history to that of some components of the 3700–3800 m.y. old Ami?tsoq gneisses, involving fractionation of garnet during their evolution.A Pb/Pb whole-rock isochron for Ami?tsoq gneisses from Isua yields an age of 3800 ± 120 m.y. (2σ), in good agreement with previously published Rb-Sr age data on the same rocks. The rock leads are highly unradiogenic and demonstrate substantial U depletion at least 3800 ± 120 m.y. ago. A two-stage model for the U-Pb system yields an average238U/204Pb (μ1) value of 9.3 ± 0.2 for the source region, which is significantly different from the published value of 9.9 ± 0.1 for the Isua iron formation. This indicates the existence of U-Pb heterogeneities between the source regions of plutonic and supracrustal rocks by about 3700–3800 m.y. ago. Attempts to apply U-Pb whole-rock dating to the Ami?tsoq gneisses were unsuccessful because of geologically recent U loss, possibly due to groundwater leaching.A Rb-Sr whole-rock isochron on a suite of Ami?tsoq gneiss samples from a different locality in the Isua region has yielded an age of 3780 ± 130 m.y.In contrast to the Godthaab area, there is no geochronological evidence at Isua for major rock-producing or tectonothermal events after about 3700 m.y. ago. The entire gneiss-supracrustal system developed within the approximate interval 3900–3700 m.y. ago.  相似文献   

5.
A vertical crustal uplift rate of 39 mm yr? 1 is measured between 2003 and 2006 using Global Positioning System (GPS) measurements at the northeastern edge of the Southern Patagonia Icefield (SPI). This is the largest present-day glacial isostatic rate ever recorded. The combination of SPI's rapid melting and the unique regional slab-window tectonics that promotes a relatively low viscosity, is central to our interpretation of the observations. The two effects lead to a strong interaction of short relaxation times with ice loads that change on a comparable time scale. The profile of GPS observations link ice loss to the soft viscoelastic isostatic flow response over the time scale of the Little Ice Age (LIA), including ice loss in the period of observation. The agreement of the results with our model predictions strongly suggests the large crustal uplift in Patagonia is due an accelerated glacier wasting since the termination of the LIA and that the effective regional mantle viscosity is near 4.0–8.0 × 1018 Pa s. A century-long diminution of the icefields, at rates that are about 1/4 – 1/2 the contemporary loss rates, is consistent with multidecadal-scale temperature trends estimated for the past 50–100 years and is, in fact, a key feature in any model capable of explaining the uplift data.  相似文献   

6.
Natural background levels of trace metals in marine organisms from a West Greenland inlet were studied during the summer of 1972 and 1973. Dry weight arsenic levels ranged from 11.1 to 307 ppm in fish fillets and from 7.6 to 512 ppm in fish livers. Prawns had arsenic levels ranging up to 80.2 ppm, contrasting with 6.0 ppm in planktonic copepods. The results suggest that in certain marine organisms organo-arsenics predominate and are less toxic than inorganic arsenic compounds.  相似文献   

7.
8.
Leveling surveys in 1923, 1976, and each year from 1983 to 1993 have shown that the east-central part of the Yellowstone caldera, near the base of the Sour Creek resurgent dome, rose at an average rate of 14±1 mm/year from 1923 to 1976 and 22±1 mm/year from 1976 to 1984. In contrast, no detectable movement occurred in the same area from 1984 to 1985 (-2±5 mm/year), and from 1985 to 1993 the area subsided at an average rate of 19±1 mm/year. We conclude that uplift from 1923 to 1984 was caused by: (1) pressurization of the deep hydrothermal system by fluids released from a crystallizing body of rhyolite magma beneath the caldera, then trapped beneath a self-sealed zone near the base of the hydrothermal system; and (2) aseismic intrusions of magma into the lower part of the sub-caldera magma body. Subsidence since 1985 is attributed to: (1) depressurization and fluid loss from the deep hydrothermal system, and (2) sagging of the caldera floor in response to regional crustal extension. Future intrusions might trigger renewed eruptive activity at Yellowstone, but most intrusions at large silicic calderas seem to be accommodated without eruptions. Overpressurization of the deep hydrothermal system could conceivably result in a phreatic or phreatomagmatic eruption, but this hazard is mitigated by episodic rupturing of the self-sealed zone during shallow earthquake swarms. Historical ground movements, although rapid by most geologic standards, seem to be typical of inter-eruption periods at large, mature, silicic magma systems like Yellowstone. The greatest short-term hazards posed by continuing unrest in the Yellowstone region are: (1) moderate to large earthquakes (magnitude 5.5–7.5), with a recurrence interval of a few decdes; and (2) small hydrothermal explosions, most of which affect only a small area (<0.01 km2), with a recurrence interval of a few years.  相似文献   

9.
Based on pressure tide-gauge observations, sea-level records are derived for ten sites along the coast of West Greenland. The ocean tidal signal is extracted by a harmonic tidal analysis. The accuracy of the determined tidal constants is discussed in detail. The tides account for 85% of the observed sea-level standard deviation. The tide gauge records reveal significant shallow-water tidal effects, in particular compound and overtide amplitudes reaching 5 cm. The propagation of the tidal waves into the fjords depends strongly on local conditions and is in some cases accompanied by an amplification of the tidal amplitudes. The observed tidal signals are compared to the predictions of the global ocean tide model FES2004. At the outer coast, a good agreement is found. Inside the fjords, however, the model performs worse and tide gauge observations may still be indispensable when accurate tidal signals are required.  相似文献   

10.
Summary Measurements of bulk magnetic properties, including the natural remanent magnetization (NRM), susceptibility and the Königsberger ratio, on over 250 samples of Tertiary basalts from Disko and Nûgssuaq, West Greenland are reported.The NRM intensities in basalts (geometric mean value 3.3 A/m in SI units) were on average three to four times as large as the induced magnetization intensities. The susceptibilities (geometric mean value 2.1×10–2 SI units) were much more uniform than the NRM intensities. In the majority of samples, the NRM was predominantly of reverse (R) polarity, but samples from a few sites showed a remanence of normal (N) polarity.The NRM of both polarity classes (N, R) was very stable against alternating field (AF) demagnetization with median destructive fields of the order of 20,000–30,000 A/m (250–350 Oe), comparable to those for many stable continental and oceanic basalts. The viscous remanence intensity, as studied by storage tests on some specimens, was found to be an insignificant fraction of the original NRM, except in few cases.The low field hysteresis loops (Rayleigh loops) were studied for some specimens. A qualitative association was noted between wide hysteresis loop and relatively low AF stability, but no correlation was apparent between the loop type and the Königsberger ratio (Q n) of a specimen.Contribution no. 6 Institute of Geophysics, University of Copenhagen.  相似文献   

11.
Relict high-pressure granulite-facies rocks have been found in the Ami?tsoq gneisses and inclusions of the older Akilia supracrustal association, on islands south of Godthåb. Only amphibolite-facies assemblages have been found in Ameralik dykes and younger rocks from this area. The Ami?tsoq gneisses are depleted in Rb and U relative to those of Ameralik and Isua. Well-fitted Pb/Pb and Rb-Sr isochrons on Ami?tsoq granulites indicate that this depletion, correlated with the granulite-facies metamorphism, occurred ca. 3600 Ma ago. Textural features suggest that the present cpx + opc + gnt + plag + qtz + hbl assemblages evolved from earlierintermediate-P assemblages (cpx + opx + plag), probably during cooling from the metamorphic peak. Re-equilibrium of olderintermediate-P assemblages in local environments of low ?H2O, during the ca. 2800-Ma metamorphism of the Malene supracrustals, is feasible but is considered unlikely. Either interpretation requires crustal thickness of at least 20 km and geothermal gradients of?30°C/km, ca.3600Ma ago. The higher heat production of early Archaean times was apparently dissipated through oceanic, rather than continental, areas.  相似文献   

12.
Sediment metal chemistry and benthic infauna surveys have been conducted over 33 years following a BACI protocol in relation to submarine tailings deposition (STD) from a lead-zinc mine in a western Greenland fjord system. We found clear predictable changes of benthic fauna composition in response to STD both temporally and spatially. Faunal re-colonization 15 years after mine closure, was slow and the impacted areas were still dominated by opportunistic species, although the most opportunistic ones (e.g. Capitella species) had decreased in importance. Concentration-response relations between sediment lead and faunal indices of benthic community integrity (e.g. the AMBI and DKI indices) indicated a threshold of ca. 200mg/kg, above which deterioration of faunal communities occurred. Above this threshold, diversity decreased dramatically and dominance of sensitive and indifferent species was substituted by tolerant or opportunistic species. Disposal of metal contaminated tailings may have long lasting effects on the biological system.  相似文献   

13.
14.
Paleocene volcanic rocks in West Greenland and Baffin Island were among the first products of the Iceland mantle plume, forming part of a larger igneous province that is now submerged beneath the northern Labrador Sea. A 40Ar/39Ar dating study shows that volcanism commenced in West Greenland between 60.9 and 61.3 Ma and that 80% of the Paleocene lava pile was erupted in 1 million years or less (weighted mean age of 60.5±0.4 Ma). Minimum estimates of magma production rates (1.3×10−4 km3 year−1 km−1) are similar to the present Iceland rift, except for the uppermost part of the Paleocene volcanic succession where the rate decreases to <0.7×10−4 km3 year−1 km−1 (rift). The timing of onset of volcanism in West Greenland coincides with the opening of the northern Labrador Sea and is also strikingly similar to the age of the oldest Tertiary volcanic rocks from offshore SE Greenland and the British–Irish province. This is interpreted as manifesting the impact and rapid (>1 m/year) lateral spreading of the Iceland plume head at the base of the Greenland lithosphere at 62 Ma. We suggest that the arrival, or at least a major increase in the flux, of the Iceland mantle plume beneath Greenland was a contributing factor in the initiation of seafloor spreading in the northern Labrador Sea. Our study has also revealed a previously unrecognised Early Eocene volcanic episode in West Greenland. This magmatism may be related to movement on the transform Ungava Fault System which transferred drifting from the Labrador Sea to Baffin Bay. A regional change in plate kinematics at 55 Ma, associated with the opening of the North Atlantic, would have caused net extension along parts of this fault. This would have resulted in decompression and partial melting of the underlying asthenosphere. The source of the melts for the Eocene magmatism may have been remnants of still anomalously hot Iceland plume mantle which were left stranded beneath the West Greenland lithosphere in the Early Paleocene.  相似文献   

15.
KAr,40Ar39Ar and RbSr dates are reported for minerals from the ca. 3700 my-old Amîtsoq and Isua gneisses of the Godthaabsfjord area of West Greenland. KAr dates on biotites and hornblendes range from about 1900 to 3500 my, with hornblendes having a much narrower range (ca. 2250–2750 my) than biotites. One biotite from Isua gives an impossibly high KAr date of 4940 my.40Ar39Ar mineral dates are in close agreement with conventional KAr dates over the entire range of apparent age values. The presence of minor amounts of excess argon is observed in the hornblendes, but radiogenic and excess argon in the biotites are completely homogenised and cannot be differentiated.Rb-Sr measurements on biotites are closely concordant and show that all biotites were completely open to diffusion of radiogenic87Sr at about 1600–1700 my. This is the first proof of a regional thermal event at this time in the Archaean of West Greenland, although similar dates are well known from the Proterozoic belts to the north and south.The evidence suggests that those KAr biotite dates greater than about 2700–2800 my result from excess radiogenic argon incorporated during a thermal event of about this age or, more probably, during the 1600–1700 my Sr isotope homogenisation event. Scatter of mineral dates below about 2700 my could also be due, at least in part, to overprinting by the 1600–1700 my event.KAr mineral dates and an Rb-Sr mineral isochron from a pegmatite associated with the last major rock-forming event in the Godthaabsfjord area, namely the Qo?rqut granite, indicate an age of emplacement of 2580 ± 30 my.  相似文献   

16.
Summary Six Younger Granite localities showing normal and reverse magnetizations in equal proportion have given a Jurassic palaeomagnetic pole position =62.5°N, =241.6°E; (Fisher's precision parameter (k)=27.8 and 95=13°). Individual palaeopole-positions have also been obtained for a Cretaceous pyroclastic rock and for two Pleistocene basalt flows.  相似文献   

17.
This study focuses on heavy metal contamination of arctic sediments from a small Fjord system adjacent to the Pb-Zn “Black Angel” mine (West Greenland) to investigate the temporal and spatial development of contamination and to provide baseline levels before the mines re-opening in January 2009. For this purpose we collected multi-cores along a transect from Affarlikassaa Fjord, which received high amounts of tailings from 1973 to 1990, to the mouth of Qaumarujuk Fjord. Along with radiochemical dating by 210Pb and 137Cs, geochemical analyses of heavy metals (e.g. As, Cd, Hg, Pb, and Zn) were carried out. Maximum contents were found at 12 cm depth in Affarlikassaa. After 17 years the mine last closed, specific local hydrographic conditions continue to disperse heavy metal enriched material derived from the Affarlikassaa into Qaumarujuk. Total Hg profiles from multi-cores along the transect clearly illustrate this transport and spatial distribution pattern of the contaminated material.  相似文献   

18.
Lu-Hf total-rock data for the Amîtsoq gneisses of West Greenland yield an age of 3.55±0.22Gy(2σ), based on the decay constant λ176Lu=1.96×10?11y?1, and an initial176Hf/177Hf ratio of 0.280482±33. The result is in good agreement with Rb-Sr total-rock and U-Pb zircon ages. In spite of severe metamorphism of the area at 2.9 Gy, zircons from two of the samples have remained on the total-rock line, and define points close to the initial Hf ratio. The initial176Hf/177Hf lies close to a chondritic Hf isotopic evolution curve from 4.55 Gy to present. This is consistent with the igneous precursors to the Amîtsoq gneisses having been derived from the mantle at or shortly before 3.6 Gy. Anomalous relationships between Hf concentration and the176Lu/177Hf ratio may suggest that trace element abundances in the Amîtsoq gneisses are partly controlled by processes related to metamorphism.  相似文献   

19.
滇西地壳三维密度结构及其大地构造含义   总被引:1,自引:0,他引:1       下载免费PDF全文
重力异常揭示地壳三维密度结构是地球物理的重要目标和任务,其关键技术是密度反演.本文对滇西地区重力异常进行了多尺度密度反演,首先利用小波变换对重力异常进行多尺度分解,接着利用功率谱分析方法估算各层场源的平均深度,然后利用广义密度反演方法进行各层密度反演,取得区域地壳多个深度上的密度扰动图像.滇西上地壳高密度扰动出现在扬子克拉通内部和西缘,以及澜沧江断裂带西缘,后者对应昌宁-勐连蛇绿混杂岩带及岛弧岩浆岩带.上地壳低密度异常主要反映西昌裂谷带和高黎贡-腾冲一带的岩浆房,和兰坪-思茅盆地中的坳陷带指示钾盐等沉积矿产目的层较厚的区段.滇西上地壳和中地壳出现三条低密度扰动带,与三期大陆碰撞带的吻合.大部分6级以上地震分布在低密度异常区或它们的边缘,只有在西昌-元古谋裂带才分布在高密度异常区.克拉通内部古裂谷带地震可分布在高密度异常区.在26°N线以南下地壳为高密度区,以北为低密度区.因此,26°N线的一个属性是下地壳密度差异分界线.滇西由北向南地壳加厚缩短的程度是逐渐变弱的,在26°N线以南,南北向的地壳加厚缩短就不明显了.高黎贡走滑剪切带、澜沧江走滑剪切带、红河走滑剪切带在滇西中地壳密度扰动平面图中表现为密度急变的梯度带.表明这三条主要的走滑剪切断裂带都穿过中地壳并可能延深到下地壳.  相似文献   

20.
Rare earth element (REE) abundances determined by activation analysis in rocks, plagioclase and mafic separates from the Fiskenaesset Complex are presented together with data on major and trace elements in the minerals. The REE data for the rocks and plagioclases are distinct from those of many other anorthositic complexes and the abundances are some of the lowest recorded for plagioclase from terrestrial anorthosites. The bulk and trace element compositions of the Fiskenaesset plagioclases show a number of similarities to those of lunar plagioclases. The plagioclases show a positive Eu anomaly of about 10 and a depletion in the heavy REE relative to the light ones. The mafic separates are enriched in the heavy REE relative to the light ones, and show no Eu anomaly except in one sample with a positive anomaly not attributable to plagioclase contamination. It is estimated, from experimental partition coefficient data, that the REE pattern in the magma at an early stage of fractionation was La (17×) to Lu (0.7× chondrites) with a possible positive Eu anomaly. This highly fractionated REE pattern may be attributed to partial melting of a garnet-bearing source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号