首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A well-dated, 3.3-m section of deep-lake clays from pluvial Lake Lahontan, now exposed along the shore of Pyramid Lake, Nevada, has provided a paleomagnetic record of secular variation during the time interval 25,000–36,000 years B.P. The measured ranges of inclination and declination are 40° and 75°, respectively, and represent values which are comparable to observed secular variation at northern mid-latitudes. These results and those from a previously reported study from Clear Lake, California, together provide strong evidence for the conclusion that northern California and western Nevada were not affected by any geomagnetic excursion during the time interval 21,000–36,000 years B.P. Such a conclusion puts severe constraints on the nature and timing of the proposed Mono Lake, Laschamp and Lake Mungo geomagnetic excursions.  相似文献   

2.
Three closely spaced 6-m piston cores were taken in the central part of Lake Tahoe. Cores were split into two complete replicates for paleomagnetic study and the remaining sections were used for stratigraphic and mineralogical analysis.Stratigraphic correlation of the cores is based on two distinctive horizons (volcanic ash and diatomite) and upon three different sedimentological regimes dominated by (1) poorly bedded silts and muds, (2) well bedded graded units, and (3) finely laminated silts. These correlations served as the standards for the evaluation of the paleomagnetic data. Extrapolation of14C dates obtained in the upper sections of the Lake Tahoe sediments suggests that the lower sections of the cores may reach ages of 25,000–30,000 years B.P.X-ray, optical, Curie point, and hysteresis measurements show that magnetite is the only important magnetic mineral in the sediments and occurs in the size range of 10 μm. Hematite is essentially absent. Based on large changes in the declination and inclination of the natural remanent magnetism (NRM) within single graded layers the paleomagnetic signature is a post-depositional remanent magnetism (PDRM). This PDRM is believed to be caused by magnetic orientation during compaction.Paleomagnetic measurements show three regimes that are correlated with the stratigraphic regimes. NRM declination and inclination data show good correlation between the three cores and agree well with the correlations based on sediment character. NRM intensity variations are due largely to the variations in magnetite content and its occurrence as either single detrital grains or as inclusions within the larger silicates. Thus the variation in paleo intensity was not determined.Comparisons of Lake Tahoe data with that from Mono Lake show fair correlations of declination and inclination. The occurrence of a short-wavelength, high-amplitude event in the lower section of the Lake Tahoe cores may provide confirmation of the Mono Lake geomagnetic excursion.  相似文献   

3.
Palaeomagnetic measurements have been made on specimens from Late Pleistocene sediments of a piston boring at Rubjerg in Vendsyssel, northern Jutland. The stratigraphy of the deposits is based on content of foraminifera. A total of 70 relatively oriented specimens were investigated palaeomagnetically. Normal steep inclinations close to that of the axial dipole field were found in the Upper Saxicava Sand and in the Younger Yoldia Clay (radiocarbon dated at 14,650 ± 190?12,650 ± 180 B.P.), and a secular variation with an amplitude of 10–12° in the inclincation and a “period” roughly estimated at about 350–400 years was found in the Younger Yoldia Clay.Seventeen relatively oriented specimens from undisturbed older marine deposits revealed a stable low inclination of 11° with α95 = 3°. The age of this apparent geomagnetic excursion falls somewhere between 23,000 and 40,000 B.P. (Older Yoldia Clay). Among other known geomagnetic excursions and events within this interval are Laschamp in France, Mono Lake in California and Lake Mungo in Australia. Until more definite ages have been obtained, the excursion is provisionally named the “Rubjerg Excursion”.  相似文献   

4.
In Southern Ocean sediments south of the Antarctic Polar Front, the scarcity of calcareous microfossils hampers the development of sediment chronologies based on radiocarbon dating and oxygen isotope stratigraphy established from carbonate. In this study, radiometric dating, magnetic susceptibility (MS), biogenic opal content, diatom abundance fluctuation, and paleomagnetic information were investigated on a north–south transect of central Scotia Sea sediment cores to verify their reliability as stratigraphic tools in the study area. Radiocarbon dating on organic carbon humic acid fraction can be used to establish the stratigraphy of upper core sections, but regional comparison and correlation are needed to verify a possible bias by fossil carbon contamination. For the long-term stratigraphy, MS, which can be correlated to the Antarctic ice core dust/climate signal, represents the most valuable parameter. Fine-grained single domain magnetite, probably of biogenic origin, makes a significant contribution to the interglacial MS signal, while major contributions from detrital material affect the glacial MS record. The core from the southern Scotia Sea contains significant proportions of biogenic magnetite also in glacial sediments, suggesting depositional environments different from those of the northern Scotia Sea. Our data suggest low contributions of high-coercive minerals to the overall magnetic intensity of glacial and interglacial Scotia Sea sediments, which excludes dust as a main source of the magnetic signal. Opal content can be used to distinguish between cold and warm intervals for the past 300 thousand years. Abundance fluctuation patterns of diatom species Fragilariopsis kerguelensis and Eucampia antarctica are useful stratigraphic tools for periods back to Marine Isotope Stage (MIS) 6. The Mono Lake geomagnetic excursion is identified in Scotia Sea sediments for the first time. Possible correlations of ash layers are suggested between Scotia Sea sediments and East Antarctic ice cores. They have potential to serve as additional age markers for further studies in this area.  相似文献   

5.
Measurement of the remanent magnetization of a 6.88-m oriented core of soft sediments and tephras from Fargher Lake near Mount St. Helens in southwestern Washington State shows that no significant geomagnetic reversals were recorded in the sediments of the lake. Radiocarbon and palynological dating of the tephra layers from the lake bed indicates deposition during the interval 17, 000–34, 000 years B.P. although geochemical correlation of a prominent tephra layer in the core with tephra set C of Mount St. Helens could mean that the maximum age of the sediments may be at least 36, 000 years B.P. The core was divided into specimens 0.02 m long, each representing approximately 55 years of deposition assuming a constant rate of sedimentation. Pilot alternating field demagnetization studies of every tenth specimen indicated a strong, stable remanence with median destructive field of 15 mT, and the remaining specimens were subsequently demagnetized in fields of this strength. The mean inclination for all specimens exclusive of the unstably magnetized muck and peat from near the surface is 56.1° which is 8° shallower than the present axial dipole field at this site, perhaps because of inclination error in the detrital remanent magnetization of the sediments, although because of the variability in the data, this departure from the axial dipole field may not be significant. The ranges of inclination and declination are comparable to those of normal secular variation at northern latitudes. Although three isolated specimens have remanence with negative inclination, these anomalous directions are due to sampling and depositional effects. Measurement of a second core of 6.86 m length also revealed only normal magnetic polarity, but this result is of little stratigraphic value as this core failed to penetrate the distinctive tephra found near the base of the former core.Studies of a concentrate of the magnetic minerals in the sediments by optical microscopy and X-ray diffraction indicate that the primary magnetic constituent is an essentially pure magnetite of detrital origin. The magnetite occurs in a wide range of grain sizes with much of it of sub-multidomain size (< 15 μm).As a whole, this study provides substantial evidence against the existence of large-scale worldwide geomagnetic reversals during the time interval of Fargher Lake sedimentation, a segment of geological time for which many excursions and reversals have been reported elsewhere.  相似文献   

6.
An analysis of the paleomagnetic characteristics of the bottom sediments taken in 2000 in the northern Barents Sea for the first time revealed the Gothenburg geomagnetic field excursion (13 000–12 000 years ago) at the time boundary of the transition from the glacial period to the recent warm epoch (the Holocene). The obtained data confirm the excursion complex structure: the presence of two successive time intervals of variations in the geomagnetic field inclination. An increase in the magnetic susceptibility and natural remanent magnetization of the samples at the above boundary and about 15 000 years ago indicates that the magnetic parameters of the sediments respond to climate changes in the environment in this time interval.  相似文献   

7.
Paleomagnetic studies of Quaternary deposits from the Malyi Kut rock sequence (Krasnodar krai, western part of the Taman Peninsula) in two time intervals of Late Pleistocene are carried out. The Malyi Kut sequence is a marine terrace of the Baku age, which is embedded in the disturbed marine Sarmatian deposits. The terrace of the Bakinian age nests the Karangat marine terrace. The presence of the marine molluscan fauna in the both terraces enables reliable dating of the studied deposits. The composition, grain size, and concentration of ferromagnetic fraction present in the studied rocks are investigated by a set of rock magnetic methods. The directions of natural remanent magnetization (NRM) are studied, and the reliability of their isolation is estimated. The results are compared with the paleomagnetic records of NRM in the rocks of the parallel coeval sections of the Tuzla (Taman Peninsula) and Roxolany (Ukraine). This correlation suggests that the studied rock sequences recorded the Mono Lake geomagnetic excursion.  相似文献   

8.
Lacustrine sediments of the Wilson Creek Formation in the Mono Basin, California, record a paleomagnetic field excursion constrained by 14C and 40Ar/39Ar geochronology to have occurred within the last 50 ka. However, 14C and 40Ar/39Ar ages are discordant, making it difficult to distinguish which of two possible excursions during this period, the Mono Lake or Laschamp, is recorded in the Mono Basin. New 40Ar/39Ar age determinations from sanidine, as well as the first biotite and obsidian ages, for three of the nineteen rhyolitic ashes intercalated with these sediments are presented and compared to previous 14C and 40Ar/39Ar data sets. Although the sanidine ages of the three ashes are stratigraphically consistent with each other and previously determined 40Ar/39Ar ages for other ashes in the Wilson Creek Formation, each is significantly older than 14C ages obtained from stratigraphically equivalent beds, relative paleointensity field correlations, oxygen isotope records, and glacial histories. These data indicate an absence of juvenile, eruptive crystals and most likely reflect the incorporation of crystals from older volcanic centers or underlying sediment. We examine the strengths and weaknesses of all available geochronologic data for the section exposed at Wilson Creek to arrive at an internally consistent set of age constraints. Using these constraints we propose two new relative paleointensity correlations for the section, both of which indicate that the excursion recorded in the Mono Basin occurred at ~30–34 ka on the Greenland Ice Sheet Project 2 (GISP2) ice core time scale.  相似文献   

9.
The detrital remanent magnetism of a series of deep-sea sediment cores from the Gulf of Mexico has been measured. Together with microfaunal analysis, the data show that excursions of the geomagnetic field occurred at 17,000 ± 1500years B.P. and32,000 ± 1500 years B.P. It is suggested that the former may be the Laschamp excursion and that the latter may be the Lake Mungo excursion. No similar geomagnetic behavior is detected for the past 50,000 years. Sedimentation rates as high as 19 cm per 1000 years are indicated.Susceptibility (χ) maxima in the cores are due to tephra layers. Correlation between the intensity of magnetization (J) and χ shows that variations of intensity are more a function of ferrimagnetic mineral concentrations than geomagnetic field intensity variations.  相似文献   

10.
A one-dimensional vertical mixing model modified for application to hypersaline Mono Lake reproduced mixed layer dynamics well but hypolimnetic heating was underestimated. One possible source of increased hypolimnetic heating is vertical mixing caused by bubble plumes of methane rising from the sediments. Estimates of vertical mixing from methane seepage in Mono Lake were made with the inclusion of a bubble plume algorithm. A methane ebullition rate three hundred times greater than the maximum estimate for Mono Lake was required to simulate the observed hypolimnetic heating.  相似文献   

11.
A 400,000 year record of the paleomagnetic field has been acquired from 22 meters of middle to late Pleistocene fine-grained sediments from Summer Lake in south-central Oregon and Double Hot Springs in northwestern Nevada. The stratigraphy is based on 55 tephra layers, nine of which have been correlated with tephra layers from other localities on the basis of their distinct major- and trace-element geochemistry and their distinct petrography. The paleomagnetic samples carry a strong and stable magnetization that does not appear to have been affected by the inclination error commonly associated with the magnetization of sediments. The samples have accurately recorded the declination and inclination of the geomagnetic field at or near the time of deposition except for errors arising from rotations of discrete blocks of sediment predominantly about vertical axes. Errors introduced by this type of rotation were corrected by using paleomagnetic directions associated with correlated tephra layers. The Summer Lake paleomagnetic record suggests that secular variations occurred throughout the middle and late Pleistocene often maintaining the same waveform through several oscillations. The amplitudes of these variations were similar to those of Holocene variations, and the periods ranged from 15,000 years to greater than 100,000 years.  相似文献   

12.
根据昌黎地震台3年多的实际观测资料,对208#CTM—DI磁通门经纬仪的稳定性进行了初步分析,结果显示:仪器格值标定和稳定性良好,但零场漂移S0较大,应予调整。反映磁通门探头磁轴不重合度的水平角度δ和垂直角度ε总体较稳定。  相似文献   

13.
A simple model for reconstructing the paleomagnetic field intensity with (10)~Be production rate was used for the first time in Loess (10)~Be studies of Luochuan profile. Using the LGM (Last Glacial Maxmium) method, the climatic effects and geomagnetic modulation effects on loess (10)~Be was separated and in turn the 80 ka geomagnetic excursion sequence reconstructed, of which the globally remarkable geomagnetic excursion events such as the Laschamp (42 ka), Mono Lake (32 ka) during the Last Glacial period were revealed and the paleo-geomagnetic intensity curve from Loess (10)~Be over the past 80 ka was quantitatively reconstructed. The reconstructed paleo-intensity fits well with the paleo-intensity curves (SINT200 and NAPIS75), which indicates the significance of global criterion of the (10)~Be paleo- intensity curve and the future direction of loess (10)~Be tracing studies. Results show the irregular vari-ability of the East Asian monsoon precipitation in Loess Plateau is the main cause that has resulted in the ambiguity of the geomagnetic modulation of the (10)~Be record in the loess, and the intrinsic source component of the loess (10)~Be and inherited fraction of magnetic susceptibility (SUS) are characterized by the "quasi-homogeneous distribution" manner.  相似文献   

14.
Petro-and paleomagnetic methods are applied to the study of the upper part of the Late Pleistocene Tuzla section (Azov coast of the Taman Peninsula) composed of continental sediments and dated at 50–10 ka. The detailed curves of the angular components of the geomagnetic field obtained in this study display an anomalous direction coinciding in time (~25–35 ka) with an anomalous horizon discovered in rocks of the Roxolany section (Ukraine). According to the world time scale of geomagnetic excursions, the anomalous direction correlates with the Mono Lake excursion. A significant correlation between the time series NRM0.015/SIRM (Tuzla section) and NRM250/KB (Roxolany section) in the interval 50–10 ka and the world composite curves VADM-21 and Sint-800 implies that, in this time interval, the curve NRM0.015/SIRM reflects the variation in the relative paleointensity of the geomagnetic field.  相似文献   

15.
太湖沉积物的磁性特征及其环境意义   总被引:28,自引:5,他引:28  
本文以太湖沉积物为研究对象,试图在磁性测量的基础上,对太湖湖区四个样芯进行分层,建立芯间层位对应联系,并结合孢粉,粒度,地球化学和有机质含量等分析测定,从沉积物样芯的磁参数曲线变化中提取该地区的环境变化信息,研究结果表明,由于该方法具快速简便,经济易行,无破坏等优点,从而可能对样芯作连续测量,以提取分辨率的环境变化信息,在湖泊沉积物的研究中有着独的作用,可作为地球化学,孢粉,微体古生物,粒度等分析  相似文献   

16.
近2600年来内蒙古居延海湖泊沉积记录的环境变迁   总被引:25,自引:3,他引:25  
根据东居延海S1孔湖泊沉积柱状岩芯的多环境指标分析结果,将近2600年来湖泊沉积物记录的环境演化过程分为十个阶段,湖泊沉积记录的气候组合特点具有冷湿→暖湿(冷干)→暖干→冷湿的过程,现阶段处于暖干阶段,预测未来气候向偏湿方向变化。近2600年来自然的气候变化在居延海湖泊环境演化中居于主导地位,而人类活动只在特定时段对湖泊环境产生较大影响。  相似文献   

17.
As a result of detailed paleomagnetic and magnetic studies of Paleolithic site deposits in the Matuzka Cave, a record of the Matuzka geomagnetic excursion in lithologic layer 7 has been discovered and studied. Such characteristic features as the geomagnetic field direction, position of the virtual geomagnetic pole, geomagnetic field intensity (roughly estimated) after and during the excursion, and climatic conditions coeval with its existence make the Matuzka excursion similar to the ~130-ka Blake excursion. This dates at ~130 ka the formation of layer 7 with ancient archaeological findings.  相似文献   

18.
A paleomagnetic record of the geomagnetic field during its change of polarity from the reversed Matuyama epoch to the normal Brunhes epoch has been obtained from sediments of ancient Lake Tecopa in southeastern California. The polarity switch occurs in siltstone of uniform composition, and anhysteretic magnetization experiments indicate that the magnetic mineralogy does not change markedly across the transition. Within the transition interval, intensity of the magnetization drops to a minimum of 10% of the intensity after the transition. The interval of low field intensity preceded and lasted longer than the interval during which the field direction reversed, the latter being shorter than the interval of low intensity by a factor of at least 2.5. The VGP's make a smooth transit from reversed to normal polarity, with the path lying in the sector of longitude between 30°E and 60°W. Pole paths for the Brunhes-Matuyama transition recorded in California and Japan are completely different, indicating that the dipole field decayed. The transition field appears to be nondipolar, and there is no evidence for an equatorial component. Since there is little dispersion of the VGP's about a great circle path, it is possible that large-scale drift of the nondipole field ceased during this polarity transition.  相似文献   

19.
An investigation of the rock magnetic properties using stepwise isothermal remanence (IRM) acquisition, thermomagnetic analysis and temperature-dependent susceptibility history, identifies magnetite as the carrier of the main fraction of the remanence, associated with maghemite and hematite in Malan loess (L1), Holocene soil (S0) and last-glacial paleosol (S1). The presence of short-lived direction fluctuations indicates that no significant smoothing occurs in L1 when its remanence is locked, and thus L1 is capable of recording the geomagnetic secular variation (PSV), while the PSV has been severely smoothed or wiped out by pedogenic processes during S1 formation. It has been suggested that the Mono Lake and Laschamp excursions are two independent geomagnetic events based on this study.  相似文献   

20.
A secular variation record of the geomagnetic declination has been obtained from glaciolacustrine varved clays and postglacial sediments, sampled both from outcrop and from piston cores from Lake Ontario. It appears to be uninterrupted and covers the interval 14,000 years B.P. (14C) to the present. The record for the interval 14,000–12,300 years B.P. consists of true declination and was obtained from samples collected from outcrop. The record for the interval 12,500 + years B.P. to the present consists of relative declination and was obtained from piston cores. The secular variation record is internally consistent and is compatible with the chronology of events known to have occurred during and following the deglaciation of western New York. Use of the record for magnetic correlation within the study area is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号