首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
RbSr isotopic analyses of the intensely deformed Hebron gneiss, Labrador, yield an isochron of approximately 3.6 b.y. with an initial87Sr/86Sr ratio of 0.7044, and chemical analyses show these rocks to be granodioritic in composition. It is believed that the isochron reflects a metamorphic event and that the Hebron gneiss was either derived from a compositionally anomalous zone in the mantle or from previously existing sialic crustal material. The Hebron gneiss is compositionally similar to some of the oldest rocks in the Archean cratons of Labrador, West Greenland, Rhodesia, South Africa and Minnesota (U.S.A.).  相似文献   

2.
U-Pb analyses of zircons from the Godthaabsfjord area in West Greenland yield dates of 2530 ± 30 m.y. for the Qo?rqut granite, 2820 ± 50 m.y. for the Nu?k gneiss, 2600–2900 m.y. for Malene-type supracrustal rocks, and >3800 m.y. for Isua supracrustal rocks. The zircon data are in accord with the stratigraphic sequence except for the Malene supracrustal zircons, which appear to have been variably affected by later metamorphism that did not reset the Nu?k or Amîtsoq zircons in the same area.  相似文献   

3.
Field studies in the vicinity of Saglek Bay, Labrador, demonstrated that it was possible to subdivide the Archaean gneiss complex into distinct lithologic units and erect a geologic chronology similar to that recognized in Godthaabsfjord, West Greenland. The Uivak gneisses are the oldest quartzo-feldspathic suite in the area and are distinguished from a younger gneissic suite in the field, the undifferentiated gneisses, by the presence of porphyritic basic dykes (Saglek dykes) within the Uivak gneisses. The Uivak gneisses range in composition from tonalites to granodiorites, with the two chemically distinct suites recognized: a grey granodioritic suite and an iron-rich plutonic igneous suite which locally intrudes or grades into a grey gneiss which strongly resembles the grey Uivak gneiss. Rb-Sr isotopic studies indicate an age of 3622 ± 72 m.y. (2σ) and initial Sr isotopic composition of 0.7014 ± 0.0008 (2σ) for the Uivak gneiss suite, i.e. grey gneiss plus iron-rich suite (λRb = 1.39 × 10?11 yr?1). The grey Uivak gneiss suite, treated independently, defines a Rb-Sr isochron with an age of 3610 ± 144 m.y. (2σ) and initial Sr isotopic composition of 0.7015 ± 0.0014 (2σ) which is indistinguishable from the age and initial ratio of the total Uivak gneiss suite, grey gneisses plus iron-rich suite. The undifferentiated gneisses define a Rb-Sr isochron with an age of 3121 ± 160 m.y. (2σ), and initial Sr isotopic composition of 0.7064 ± 0.0012 (2σ). The isotopic data support field observations suggesting the undifferentiated gneisses were derived by local remobilization of the grey Uivak gneisses. The Uivak gneisses resemble the Amitsoq gneisses of Godthaabsfjord both chemically and isotopically. The interpretation of the initial Sr isotopic composition of the Uivak gneisses is interpreted as the time of regional homogenization rather than the initial ratio of the plutonic igneous parents of the Uivak gneisses as suggested for the Amitsoq gneisses. Although the undifferentiated gneisses are contemporaneous with the Nuk gneisses of West Greenland, they do not form a well-defined calc-alkaline suite and may not be associated with major crustal thickening in the Labrador Archaean.  相似文献   

4.
In the Tyrrhenian region of central Italy, late Quaternary fossil travertines are widespread along two major regional structures: the Tiber Valley and the Ancona-Anzio line. The origin and transport of spring waters from which travertines precipitate are elucidated by chemical and isotopic studies of the travertines and associated thermal springs and gas vents. There are consistent differences in the geochemical and isotopic signatures of thermal spring waters, gas vents and present and fossil travertines between east and west of the Tiber Valley. West of the Tiber Valley, δ13C of CO2 discharged from gas vents and δ13C of fossil travertines are higher than those to the east. To the west the travertines have higher strontium contents, and gases emitted from vents have higher 3He/4He ratios and lower N2 contents, than to the east. Fossil travertines to the west have characteristics typical of thermogene (thermal spring) origin, whereas those to the east have meteogene (low-temperature) characteristics (including abundant plant casts and organic impurities). The regional geochemical differences in travertines and fluid compositions across the Tiber Valley are interpreted with a model of regional fluid flow. The regional Mesozoic limestone aquifer is recharged in the main axis of the Apennine chain, and the groundwater flows westward and is discharged at springs. The travertine-precipitating waters east of the Tiber Valley have shallower flow paths than those to the west. Because of the comparatively short fluid flow paths and low (normal) heat flow, the groundwaters to the east of the Tiber Valley are cold and have CO2 isotopic signatures, indicating a significant biogenic contribution acquired from soils in the recharge area and limited deeply derived CO2. In contrast, spring waters west of the Tiber Valley have been conductively heated during transit in these high heat-flow areas and have incorporated a comparatively large quantity of CO2 derived from decarbonation of limestone. The elevated strontium content of the thermal spring water west of the Tiber Valley is attributed to deep circulation and dissolution of a Triassic evaporite unit that is stratigraphically beneath the Mesozoic limestone. U-series age dates of fossil travertines indicate three main periods of travertine formation (ka): 220-240, 120-140 and 60-70. Based on the regional flow model correlating travertine deposition at thermal springs and precipitation in the recharge area, we suggest that pluvial activity was enhanced during these periods. Our study suggests that travertines preserve a valuable record of paleofluid composition and paleoprecipitation and are thus useful for reconstructing paleohydrology and paleoclimate.  相似文献   

5.
Lu-Hf total-rock data for the Amîtsoq gneisses of West Greenland yield an age of 3.55±0.22Gy(2σ), based on the decay constant λ176Lu=1.96×10?11y?1, and an initial176Hf/177Hf ratio of 0.280482±33. The result is in good agreement with Rb-Sr total-rock and U-Pb zircon ages. In spite of severe metamorphism of the area at 2.9 Gy, zircons from two of the samples have remained on the total-rock line, and define points close to the initial Hf ratio. The initial176Hf/177Hf lies close to a chondritic Hf isotopic evolution curve from 4.55 Gy to present. This is consistent with the igneous precursors to the Amîtsoq gneisses having been derived from the mantle at or shortly before 3.6 Gy. Anomalous relationships between Hf concentration and the176Lu/177Hf ratio may suggest that trace element abundances in the Amîtsoq gneisses are partly controlled by processes related to metamorphism.  相似文献   

6.
Selected-area measurements of lead-isotope ratios in zircons have been made at high mass resolution using a modified A.E.I. IM20 ion-microprobe. At a working resolution of 3200 it is shown that the important interfering molecular peaks generated from the zircon matrix may be separated from atomic lead peaks. Corrections for overlapping peaks, which are necessary in measurements of lead isotopes at low mass resolution, are then only required for 208Pb.Measurements on N.B.S. standards show no isotope discrimination within counting statistics. Determination of 207Pb/206Pb on 29 single zircon grains from a tonalite gneiss and a granite from Lac Seul, northwestern Ontario, give very variable ratios with mean values close to those of bulk separates. Peaks in the distribution of 207/206 ratios obtained from the tonalite gneiss may be interpreted as evidence for two stages of lead loss. High 207/206 ratios are shown to be significant for at least two zircons and probably record a minimum age of formation of 3.3 ± 0.1 b.y. for the gneiss.  相似文献   

7.
Paleocene volcanic rocks in West Greenland and Baffin Island were among the first products of the Iceland mantle plume, forming part of a larger igneous province that is now submerged beneath the northern Labrador Sea. A 40Ar/39Ar dating study shows that volcanism commenced in West Greenland between 60.9 and 61.3 Ma and that 80% of the Paleocene lava pile was erupted in 1 million years or less (weighted mean age of 60.5±0.4 Ma). Minimum estimates of magma production rates (1.3×10−4 km3 year−1 km−1) are similar to the present Iceland rift, except for the uppermost part of the Paleocene volcanic succession where the rate decreases to <0.7×10−4 km3 year−1 km−1 (rift). The timing of onset of volcanism in West Greenland coincides with the opening of the northern Labrador Sea and is also strikingly similar to the age of the oldest Tertiary volcanic rocks from offshore SE Greenland and the British–Irish province. This is interpreted as manifesting the impact and rapid (>1 m/year) lateral spreading of the Iceland plume head at the base of the Greenland lithosphere at 62 Ma. We suggest that the arrival, or at least a major increase in the flux, of the Iceland mantle plume beneath Greenland was a contributing factor in the initiation of seafloor spreading in the northern Labrador Sea. Our study has also revealed a previously unrecognised Early Eocene volcanic episode in West Greenland. This magmatism may be related to movement on the transform Ungava Fault System which transferred drifting from the Labrador Sea to Baffin Bay. A regional change in plate kinematics at 55 Ma, associated with the opening of the North Atlantic, would have caused net extension along parts of this fault. This would have resulted in decompression and partial melting of the underlying asthenosphere. The source of the melts for the Eocene magmatism may have been remnants of still anomalously hot Iceland plume mantle which were left stranded beneath the West Greenland lithosphere in the Early Paleocene.  相似文献   

8.
Stable oxygen isotope analysis and measurement of several dissolved cations and anions of bulk meltwater samples have provided information about the hydrochemical environment of the glacial hydrological system at Imersuaq Glacier, an outlet tongue from the Greenland ice‐sheet, West Greenland. The samples were collected at frequent intervals during the period 20–28 July 2000 in a small (<20 L s?1) englacial meltwater outlet at the glacier margin. The results document the following findings: (i) a marked diurnal variation of δ18O is related to the composition of oxygen isotope provenances, mainly near‐marginal local superimposed ice and basal up‐sheared ice further up‐glacier; (ii) a relationship is seen between all base cations (Na+, K+, Ca2+, Mg2+), SO42? and δ18O, indicating that solute acquisition is provided by solid–solution contact with the up‐sheared ice—as the relationship with Cl? is weak the influence of seasalt‐derived solutes is small in the area; (iii) when the melt rate is high, two diurnal maxima of δ18O values and solute concentrations are measured, and it is suggested that a snow meltwater component is responsible for the second maximum of δ18O—a short residence time leads to a delayed decrease in ion concentrations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts206Pb and238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0–1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome.Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ± 6.5 m.y.), Orapa (87.4 ± 5.7 and 92.4 ± 6.1 m.y.), Nzega (51.1 ± 3.8 m.y.), Koffiefontein (90.0 ± 8.2 m.y.), and Val do Queve (133.4 ± 11.5 m.y.). In addition we report the first radiometric ages (707.9 ± 59.6 and 705.5 ± 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption.  相似文献   

10.
Metasedimentary and metavolcanic rocks from the Archaean of West Greenland have been examined for evidence of crustal components greater than 3.8 Ga in age and for their compatibility with the presently adopted bulk Earth Sm-Nd parameters. Sm-Nd isotopic data have been obtained for the garbenschiefer metagabbro unit, metasediments from the Isua supracrustal belt, gneisses interior to the Isua belt and metasediments from the Malene supracrustal belt.Using estimates of emplacement age (T) of between 3.77 and 3.67 Ga for the parental volcanics to the garbenschiefer unit, initial143Nd/144Nd ratios yield positiveεNdT values between +1.0 and +3.1 (relative to the CHUR parameters) for seven out of eight samples. Model Sm-Nd ages for the Isua gneisses and metasediments are only compatible with their estimated stratigraphic ages if their sources were ca.+2εNd relative to CHUR at those times. Similarly, model Sm-Nd ages for the Malene samples are only compatible with stratigraphic age constraints when based on a source evolution with positiveεNdT. Implications of these results for the early development of the Earth's mantle are discussed.  相似文献   

11.
UPb isotopic measurements on individual zircon crystals combined with morphological analyses permit the identification of three distinct components within the zircon population of the Saedelhorn diorite, a Variscan dike from the western Gotthard (Central Alps, Switzerland): (i) 94% of the grains in the zircon population are elongate crystals with pronounced skeletal morphology indicative of rapid growth from a supercooled melt. (ii) 5% of the population consist of turbid, mostly subhedral zircons frequently showing D-type morphology (classification according to Pupin and Turco [1]) and elevated uranium contents compared to the skeletal variety. Single-crystal and multi-grain UPb isotopic data of group (i) and (ii) zircons define an intrusion age of 293 +5/−4 m.y. for the dike. (iii) Rare, transparent zircon crystals (<1% of the zircon population) yield apparent UPb ages in the range of 370–490 m.y. and display morphological and isotopic characteristics closely resembling those of a Caledonian orthogneiss intruded by the dike. This implies presence of assimilated wall-rock components in the macroscopically homogeneous dike sample.A comparison of the data obtained by conventional analysis of multi-grain zircon fractions and those obtained by grain-by-grain analysis demonstrates that age resolution is considerably improved by single-crystal UPb dating. Furthermore, quantitative identification of zircon components assimilated by the ascending magma along its path to the present level of exposure is feasible by the latter technique. Since it is likely that such zircon grains are common to a broad variety of magma types, valuable information on age and composition of crustal layers not accessible to direct observation may readily become available by application of precise micro-analytical techniques.Low initial143Nd/144Nd(εNd = −2.7) at the time of intrusion of the Saedelhorn dike requires the magma to be derived partially or totally from a crustal source. For this crustal precursor, a model age of 1050 m.y. (TDM) is obtained, indicating that Proterozoic crust was involved in the petrogenesis of the Variscan intrusives of the Gotthard area.  相似文献   

12.
Littlefield Springs discharge about 1.6 m3/s along a 10‐km reach of the Virgin River in northwestern Arizona. Understanding their source is important for salinity control in the Colorado River Basin. Environmental tracers suggest that Littlefield Springs are a mixture of older groundwater from the regional Great Basin carbonate aquifer and modern (post‐1950s) seepage from the Virgin River. While corrected 14C apparent ages range from 1 to 9 ka, large amounts of nucleogenic 4He and low 3He/4He ratios suggest that the carbonate aquifer component is likely even older Pleistocene recharge. Modeled infiltration of precipitation, hydrogeologic cross sections, and hydraulic gradients all indicate recharge to the carbonate aquifer likely occurs in the Clover and Bull Valley Mountains along the northern part of the watershed, rather than in the nearby Virgin Mountains. This high‐altitude recharge is supported by relatively cool noble‐gas recharge temperatures and isotopically depleted δ2H and δ18O. Excess (crustal) SF6 and 4He precluded dating of the modern component of water from Littlefield Springs using SF6 and 3H/3He methods. Assuming a lumped‐parameter model with a binary mixture of two piston‐flow components, Cl?/Br?, Cl?/F?, δ2H, and CFCs indicate the mixture is about 60% Virgin River water and 40% groundwater from the carbonate aquifer, with an approximately 30‐year groundwater travel time for Virgin River seepage to re‐emerge at Littlefield Springs. This suggests that removal of high‐salinity sources upstream of the Virgin River Gorge would reduce the salinity of water discharging from Littlefield Springs into the Virgin River within a few decades.  相似文献   

13.
This paper summarizes results obtained for Greenland??s mass balance observed with NASA??s GRACE mission. We estimate a Greenland ice sheet mass loss at ?201 ± 19 Gt/year including a discernible acceleration of ?8 ± 7 Gt/year2 between March 2003 and February 2010. The mass loss of glacier systems on the South East of Greenland has slowed down while the mass loss increases toward the North along the West side of Greenland. The mass balance can be compared with results obtained by a regional climate model of the Greenland system and ice sheet altimeter data obtained from NASA??s ICEsat mission. Our GRACE-only results differ to within 15% from these independently calculated values; we will comment on the possible causes and the quality of the glacial isostatic adjustment model which is used to correct geodetic datasets.  相似文献   

14.
The Long Valley Exploratory Well, at the center of the Resurgent Dome of Long Valley caldera, penetrated pre-caldera basement rocks at a depth of 2101.72–2313.0 m, beneath the caldera-forming Bishop Tuff and post-caldera Early Rhyolite. The basement rocks contain prominent quartzites, with ubiquitous milky white quartz veins (with minor calcite and pyrite) and fractures of varied orientation and geometry. The other members of the basement sequence are very fine-grained quartz-rich graphitic pelites with calcite veins, spotted hornfels, and shallow intrusive rocks. Previous studies established the presence of a post-caldera, paleohydrothermal system (500–100 ka) to a depth of 2000 m that affected the Bishop Tuff and a recent (40 ka to present) hydrothermal system at shallow depth (<1 km). The deeper extent of these hydrothermal activities is established in this paper by a detailed oxygen isotope analysis of the drill core samples. 238 analyses of δ18O in 50 quartz veins within the 163.57 m depth interval of basement rocks reveal extreme heterogeneity in δ18O values (8–19.5‰). Majorities of the 84 bulk analyses of quartzites show variation of δ18O within a narrow range of 14–16‰. However, certain samples of these quartzites near the contacts with veins and fractures exhibit sharp drops in δ18O. The interbedded pelitic rocks and spotted hornfels have whole-rock δ18O ranging from 2.2 to 11.8‰. Clear, euhedral vuggy quartz that partially fills earlier open fractures in both the quartzites and quartz veins, has distinctive δ18O, ranging between −3.2 and +8.4‰. Low values of δ18O are also found in the hydrothermal minerals and whole rocks adjacent to the thin veins, clearly indicating infiltration of meteoric water. Three distinct observed patterns of fractionation in δ18O between veins and host quartzites are analyzed with the principles of mass balance, equilibrium oxygen isotope fractionation in closed system, and kinetically controlled oxygen isotope exchange in an open system. This analysis suggests that the early quartz veins formed due to a magmatic-hydrothermal activity with no influx of external water once the system comprising the sedimentary envelope and a magmatic-hydrothermal fluid phase became closed. Two-stage isotopic exchange processes caused fractionation in the δ values that originally formed arrays with slope 1 in a δvein quartz–δhost quartzite space. Another array in the same space, with near zero slope was also formed due to variation in temperature, initial isotopic compositions of the quartzite sequence and the fluid phase. Variation in temperature was mostly in the range of 300–400°C giving Δ (=δvein quartz–δhost quartzite)≈−2.8 to +2.8. The δ18O of the fluid could range from −5 to +10; however a narrower range of +5 to +10 can explain the data. This episode of hydrothermal activity could take place either as a single pulse or in multiple pulses but each as a closed system. A later, fracture-controlled, meteoric water (δ18O−0.46 to −12.13) flow and interaction (at 250°C) is interpreted from the analysis of δ18O values of the coexisting quartz and calcite pairs and existence of markedly 18O-depleted pelitic horizons interbedded with 18O-enriched quartzite layers. Thus, the interpreted earlier magmatic-hydrothermal activity was overprinted by a later meteoric-hydrothermal activity that resulted in steep arrays of δ18O values in the δvein quartz–δhost quartzite space. Calculations show that the likely life span of the post-caldera, hydrothermal activity in the depth range of 2.1–2.3 km beneath Long Valley was 0.08–0.12 Ma. Diffusive ±advective transport of oxygen isotopes from fracture-channelized meteoric water to nearly impermeable wall rocks caused a lowering of δ18O values in the quartz over short distances and in calcites over greater distances. Thus, the hydrothermal activity appears pervasive even though the meteoric water flow was primarily controlled by fractures.  相似文献   

15.
A detailed study of the geochemistry of a new suite of early Iceland plume picrites shows that extremely high 3He/4He ratios (up to 50 Ra) are found in picrites from Baffin Island and West Greenland. High 3He/4He picrites display a wide range in 87Sr/86Sr (0.70288–0.70403), 143Nd/144Nd (0.51288–0.51308) and incompatible trace element ratios (e.g. La/Smn = 0.5–1.6). These overlap the complete range of compositions of mid-ocean ridge basalts and most northern hemisphere ocean island basalts, including Iceland. Crustal contamination modelling in which high-grade Proterozoic crustal basement rocks for the region are mixed with a depleted parent cannot account for the trend displayed by the Baffin Island and West Greenland picrites. This rules out the possibility that the incompatible trace element, Sr and Nd isotope range of the high 3He/4He picrites is due to crustal contamination. The compositional range at high 3He/4He is also inconsistent with derivation from a primordial-He-rich reservoir that is a residue of ancient mantle depletion. This implies that the composition of the high 3He/4He mantle cannot be determined simply by extrapolating ocean island basalt He–Sr–Nd–Pb–Os isotope data.The apparent decoupling of He from trace element and lithophile radiogenic isotope tracers is difficult to attain by simple mixing of a high-[He], high 3He/4He reservoir with various depleted and enriched He-poor mantle reservoirs. The possibility that primordial He has diffused into a reservoir with a composition typical of convecting upper mantle cannot be ruled out. If so, the process must have occurred after the development of existing mantle heterogeneity, and requires the existence of a deep, primordial He-rich reservoir.  相似文献   

16.
Specific electrical conductivity (SEC), total dissolved solids (TDS), and silica (SiO2) are ground-water quality parameters routinely measured in a laboratory. Electrical conductivity measurements are made quickly and are less costly than TDS measurements. Once the relationship between the parameters is determined by regression analysis, TDS can be estimated quickly from the SEC and SiO2 measurements. Water quality data from 25 city wells in Fresno, California, and historical ground-water quality data from the adjacent San Joaquin River/Kings River alluvial interfan (central San Joaquin Valley, California), the Kaweah River alluvial fan, and the Kern River alluvial fan (southern San Joaquin Valley) were used in this investigation. For the specific hydrologic areas studied, the model's TDS predictive ability is improved when SiO2 is included with SEC as the independent variables.  相似文献   

17.
The Caledonian Jotun nappe in the Tyin area of southern Norway has been investigated using U-Pb analysis of zircon and sphene and Rb-Sr measurements of minerals and whole rocks, with special reference to the reaction of the isotope systems to various kinds of metamorphic event. The nappe consists of Precambrian basement rocks and their cover, inversely thrust over the Baltic shield and its parautochthonous, presumably lower Paleozoic sediments during the Caledonian orogeny. While the nappe basement retained its pre-Caledonian structures, the nappe cover was penetratively deformed and metamorphosed to lower greenschist facies conditions.U-Pb analyses of zircon and sphene ofnappe basement rocks point to the crystallization of a syenitic to monzonitic magma at 1694± 20m.y., the intrusion of gabbros into the syenites and monzonites at 1252?25+28 m.y., and the metamorphism (upper greenschist-lower amphibolite facies) and deformation (gneissification and mylonitization) of the whole complex at 909± 16m.y. Although this latest event caused strong lead loss in all zircon populations, it had no influence on the Rb-Sr system on a whole rock scale. The Caledonian movements did not disturb the U-Pb system of zircon and sphene but strongly influenced the Rb-Sr system in certain minerals and zircon and/or its inclusions (K-feldspar and brown biotite partially, green biotite completely reset).In contrast to the nappe basement, zircons from thecover rocks show pronounced lead loss during the Caledonian metamorphism/deformation — U-Pb analysis give discordia lower intercept ages of 415± 21 m.y. and 395± 6m.y. Again, however, the Rb-Sr whole-rock system has not been reset in Caledonian time. Minerals from the same rocks which provided the zircons give Rb-Sr isochron ages of 390± 11m.y. and 386 ± 20 m.y.Comparison of U-Pb and Rb-Sr results from the nappe basement demonstrates that only the analysis of U-Pb systematics in zircon and especially sphene resolved the 900-m.y. event. Rb-Sr mineral data alone yield ambiguous results.The results from the nappe cover confirm that U-Pb analyses from penetratively deformed sediments are very useful in dating a metamorphic/tectonic event in lower greenschist facies conditions.From the measured cell dimensions of the zircon populations it is concluded that lead can be completely retained in zircon during recrystallization.  相似文献   

18.
Ion probe UPb age determinations on zircons from two samples of metasediment belonging to the Malene supracrustals of southern West Greenland closely constrain the age of sedimentation, between the youngest age obtained from detrital material and the age of metamorphic overgrowth. For both samples, older and younger limits of ca. 2900 Ma and ca. 2650 Ma, respectively, are indicated. Some of the detrital zircons are best interpreted as derived from their source rock after the regional high-grade metamorphism at ca. 2800 Ma: if so, the older limit of the age of sedimentation is younger than 2800 Ma. The hypothesis that all Malene supracrustal rocks pre-date the middle to late Archaean Nuˆk gneisses is no longer valid. This has major implications for interpretations of the late Archaean crustal evolution of western Greenland: the period between 2800 and 2500 Ma was characterised by major tectonic activity and metamorphism.  相似文献   

19.
The oldest known bona fide succession of clastic metasediments occurs in the Isua Greenstone Belt, SW Greenland and consists of a variety of mica schists and rare metaconglomerates. The metasediments are in direct contact with a felsic metavolcanic lithology that has previously been dated to 3.71 Ga. Based on trace element geochemical data for > 30 metasediments, we selected the six samples with highest Zr concentrations for zircon extraction. These samples all yielded very few or no zircon. Those extracted from mica schists yielded ion probe U/Pb ages between 3.70 and 3.71 Ga. One metaconglomerate sample yielded just a single zircon of 3.74 Ga age.The mica schist hosted zircons have U/Pb ages, Th / U ratios, REE patterns and Eu anomalies indistinguishable from zircon in the adjacent 3.71 Ga felsic metavolcanic unit. Trace element modelling requires the bulk of material in the metasediments to be derived from variably weathered mafic lithologies but some metasediments contain substantial contribution from more evolved source lithologies. The paucity of zircon in the mica schists is thus explained by incorporation of material from largely zircon-free volcanic lithologies. The absence of older zircon in the mica schists and the preponderance of mafic source material imply intense, mainly basaltic resurfacing of the early Earth. The implications of this process are discussed.Thermal considerations suggest that horizontal growth of Hadean crust by addition of mafic-ultramafic lavas must have triggered self-reorganisation of the protocrust by remelting. Reworking of Hadean crust may have been aided by burial of hydrated (weathered) metabasalt due to semi-continuous addition of new voluminous basalt outpourings. This process causes a bias towards eruption of Zr-saturated partial melts at the surface with O-isotope compositions potentially different from the mantle. The oldest zircons hosted in sediments would have been buried to substantial depth or formed in plutons that crystallised at some depth, from which it took hundreds of millions of years for them to be exhumed and incorporated into much younger sediments.  相似文献   

20.
In this review, the carbon dioxide problem is discussed, with special reference to the possible effects of a global warming on the ice sheets of Greenland and Antarctica. Instead of detailed projections of future climate and the consequences, the basic mechanisms are explained and illustrated with results described in the literature.It is concluded that a doubling of the atmospheric CO2 content (most likely to occur somewhere in the second half of the next century) will result in a globally-averaged warming of 2–4°C, and an intensification of the hydrological cycle. In the polar regions, this warming will be a few degrees larger and as a consequence the Greenland Ice Sheet will decrease in size. Antarctica, on the other hand, is expected to grow because of the increased snowfall. The instability of the West Antarctic Ice Sheet is also discussed and, although no conclusive prediction to its long-term response can be made, it is argued that on a short time scale (less than about 100 y) nothing dramatically wil happen to this part of Antarctica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号