首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
ABSTRACT

Lack of discharge data for model calibration is challenging for flood prediction in ungauged basins. Since establishment and maintenance of a permanent discharge station is resource demanding, a possible remedy could be to measure discharge only for a few events. We tested the hypothesis that a few flood-event hydrographs in a tropical basin would be sufficient to calibrate a bucket-type rainfall–runoff model, namely the HBV model, and proposed a new event-based calibration method to adequately predict floods. Parameter sets were chosen based on calibration of different scenarios of data availability, and their ability to predict floods was assessed. Compared to not having any discharge data, flood predictions improved already when one event was used for calibration. The results further suggest that two to four events for calibration may considerably improve flood predictions with regard to accuracy and uncertainty reduction, whereas adding more events beyond this resulted in small performance gains.  相似文献   

2.
Monitoring the temporal variation of solute concentrations in streams at high temporal frequency can play an important role in understanding the hydrological and biogeochemical behaviour of catchments. UV–visible spectrometry is a relatively inexpensive and easily used tool to infer those concentrations in streams at high temporal resolution. However, it is not yet clear which solutes can be modelled with such an in-situ sensor. Here, we installed a UV–visible spectrometer probe (200–750 nm) in a high-altitude tropical Páramo stream to record the wavelength absorbance at a 5-min temporal resolution. For calibration, we simultaneously sampled stream water at a 4-h frequency from February 2018 to March 2019 for subsequent laboratory analysis. Absorbance spectra and laboratory-determined solute concentrations were used to identify the best calibration method and to determine which solute concentrations can be effectively inferred using in situ spectrometry through the evaluation of six calibration methods of different mathematical complexity. Based on the Nash – Sutcliffe efficiency (NSE) and Akaike information criterion metrics, our results suggest that multivariate methods always outperformed simpler strategies to infer solute concentrations. Eleven out of 21 studied solutes (Al, DOC, Ca, Cu, K, Mg, N, Na, Rb, Si and Sr) were successfully calibrated (NSE >0.50) and could be inferred using UV–visible spectrometry even with a reduced daily sampling frequency. It is worth noting that most calibrated solutes were correlated with wavelengths (WLs) in the low range of the spectra (i.e., UV range) and showed relatively good correlation with DOC. The latter suggests that estimation of metal concentrations could be possible in other streams with a high organic load (e.g., peat dominated catchments). In situ operation of spectrometers to monitor water quality parameters at high temporal frequency (sub-hourly) can enhance the protection of human water supplies and aquatic ecosystems as well as providing information for assessing catchment hydrological functioning.  相似文献   

3.
We present a 10Be production-rate calibration derived from an early Holocene debris-flow deposit at about 1000 m above sea level in the central Southern Alps, New Zealand, in the mid-latitude Southern Hemisphere. Ten radiocarbon ages on macrofossils from a soil horizon buried by the deposit date the deposit to 9690 ± 50 calendar years before AD2008. Surface 10Be concentrations of seven large boulders partially embedded in the stable surface of the deposit are tightly distributed, yielding a standard deviation of ~2%. Conversion of the 10Be measurements to sea level/high-latitude values using each of five standard scaling methods indicates 10Be production rates of 3.84 ± 0.08, 3.87 ± 0.08, 3.83 ± 0.08, 4.15 ± 0.09, and 3.74 ± 0.08 atoms g?1 a?1, relative to the ‘07KNSTD’ 10Be AMS standard, and including only the local time-integrated production-rate uncertainties. When including a sea level high-latitude scaling uncertainty the overall error is ~2.5% (1σ) for each rate. To test the regional applicability of this production-rate calibration, we measured 10Be concentrations in a set of nearby moraines deposited before 18 060 ± 200 years before AD2008. The 10Be ages are only consistent with minimum-limiting 14C age data when calculated using the new production rates. This also suggests that terrestrial in situ cosmogenic-nuclide production did not change significantly from Last Glacial Maximum to Holocene time in New Zealand. Our production rates agree well with those of a recent calibration study from northeastern North America, but are 12–14% lower than other commonly adopted values. The production-rate values presented here can be used elsewhere in New Zealand for rock surfaces exposed during or since the last glacial period.  相似文献   

4.
The hafnium isotopic analysis using laser ablation has been widely conducted on Hf-rich minerals(zircon/baddeleyite/ calzirtite/eudialyte), however, little work has been reported on Hf-poor(100 ppm) minerals. This work presents a detailed procedure of in situ hafnium isotopic analysis from rutile using laser ablation multiple collector inductively coupled plasma mass spectrometry(LA-MC-ICP-MS). The rutile U-Pb dating reference material JDX shows homogeneous hafnium isotopic ratios, with 176Hf/177Hf=0.281795±0.000015(2SD, n=33) and 176Lu/177Hf=0.000018±0.000004(2SD, n=17) that suggest the possibility of using JDX as a new reference material hafnium isotopic measurement. We also measure hafnium isotopic compositions of other rutile U-Pb dating reference material(R10, Sugluk-4 and PCA-S207) and the 176Hf/177 Hf values are similar to previously reported results, which confirms that we can acquire accurate and precise hafnium isotopic compositions using our developed analytical protocol. We analyzed hafnium isotopic compositions and U-Pb ages of rutile in high-temperature and ultrahigh-temperature granulites from various terrains of the Khondalite Belt from the North China Craton, combined with zircon results in the same area, suggesting that the metamorphic evolution history of the granulite is much more complicated than previously thought.  相似文献   

5.
Drop size distribution (DSD) over the tropical region exhibit pronounced variations during different monsoon seasons. Measurements from an impact type Joss–Waldovgel disdrometer is used for characterization of drop size distribution and its integral parameters over a tropical coastal station (Thiruvananthapuram, 8.31°N, 76.54°E, 20 m asl). Rain events were identified during the winter, premonsoon, summer monsoon and postmonsoon seasons from 8 years, computed rain duration (min) and accumulated rain water (mm). Rain intensity (mm h?1), mean drop diameter (Dm, mm) and total number concentration of raindrops (NT, m?3) were calculated on each sampling interval and classified in to different bins. The different range bins of rain intensity and their relative contributions towards total rainfall are different for different seasons. Maximum events were reported on the R2 (heavy drizzle/light rain) type, but the contribution of rainfall (mm) is mainly registered on R4 (heavy rain) type. Similarly, the NT and Dm are also showing different characteristics during different monsoon seasons. Frequency of occurrence of Dm is higher in Dm2 (1–2 mm) followed by Dm1 (Dm < 1 mm) and then Dm3 (2–3 mm) with difference in magnitudes for different seasons. On analysing relative rainfall contribution from different mean diameter bins, it can be observed that Dm2 and Dm3 (1–3 mm) are the major contributors to the total rainfall. In the case of NT, both frequency and accumulated water are almost same or comparable for the different bins during all the seasons. The Dm and NT are positively related with different intensity bins. The lower rainfall intensity bins show higher duration during the summer monsoon season and lower duration during the premonsoon season, the higher intensity range bins show lower duration for the premonsoon season and higher duration for the postmonsoon season.  相似文献   

6.
H.S. Kim  S. Lee 《水文研究》2014,28(4):2159-2173
The hydrological response characteristics for the catchments in the Republic of Korea are related to a strong seasonality in the rainfall and streamflow distributions with distinct wet and dry seasons. This study aims to improve a model's ability to predict streamflows by minimizing information loss from the available data during the calibration processes. This study assesses calibration techniques incorporating a multi‐objective approach and seasonal calibration. The lumped conceptual rainfall–runoff model IHACRES was applied to selected catchments in Korea. The model was calibrated based on three different methods: the classical approach using a single performance statistic (the single‐objective method), the multi‐objective approach (the multi‐objective method (I)) and the combined approach incorporating multi‐objective and seasonal calibrations (the multi‐objective method (II)). In the multi‐objective approach, the ‘best fit’ models in the calibration period were selected by considering the trade‐offs among multiple statistics. During seasonal calibration, the calibration period was divided into four seasons to investigate whether these calibrated models can improve the model performance with regards to seasonal climate, rainfall and streamflow distributions. The adequacy of the three different calibration methods was assessed through comparison of the variability of model performance in high and low flows and water balance for the entire period and for each seasonal period. The multi‐objective methods yielded more accurate and consistent predictions for high and low flows and water balance simultaneously, compared to the single‐objective method. In particular, the multi‐objective method (II) produces the best modelling capacity to capture the non‐stationary nature of the hydrological response under different climate conditions. The pattern of improvement with the multi‐objective method (II) was generally consistent through the seasons, with the exception of the winter period in the regions partially affected by snow. This exception is due to a potential limitation of the IHACRES model in reflecting the impact of snow on the catchment hydrology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Well-dated bedrock surfaces associated with the highstand and subsequent catastrophic draining of Pleistocene Lake Bonneville, Utah, during the Bonneville flood are excellent locations for in situ cosmogenic nuclide production rate calibration. The CRONUS-Earth project sampled wave-polished bedrock and boulders on an extensive wave-cut bench formed during the Bonneville-level highstand that was abandoned almost instantaneously during the Bonneville flood. CRONUS-Earth also sampled the Tabernacle Hill basalt flow that erupted into Lake Bonneville soon after its stabilization at the Provo level, following the flood. New radiocarbon dating results from tufa at the margins of Tabernacle Hill as part of this study have solidified key aspects of the exposure history at both sites. Both sites have well-constrained exposure histories in which factors such as potential prior exposure, erosion, and shielding are either demonstrably negligible or quantifiable. Multi-nuclide analyses from multiple labs serve as an ad hoc inter-laboratory comparison that supplements and expands on the formalized CRONUS-Earth and CRONUS-EU inter-laboratory comparisons (Blard et al., 2015; Jull et al., 2015; Vermeesch et al., 2015). Results from 10Be, 26Al, and 14C all exhibit scatter comparable to that observed in the CRONUS-Earth effort. Although a 36Cl inter-laboratory comparison was not completed for Jull et al. (2015), 36Cl from plagioclase mineral separates exhibits comparable reproducibility. Site production rates derived from these measurements provide valuable input to the global production rate calibration described by Borchers et al. (2015). Whole-rock 36Cl concentrations, however, exhibit inter-laboratory variation exceeding analytical uncertainty and outside the ranges observed for the other nuclides (Jull et al., 2015). A rigorous inter-laboratory comparison studying the systematics of whole-rock 36Cl extraction techniques is currently underway with the goals of delineating the source(s) of this discrepancy and standardizing these procedures going forward.  相似文献   

8.
It is well known that sediment properties, including sediment‐associated chemical constituents and sediment physical properties, can exhibit significant variations within and between storm runoff events. However, the number of samples included in suspended sediment studies is often limited by time‐consuming and expensive laboratory procedures after stream water sampling. This restricts high frequency sampling campaigns to a limited number of events and reduces accuracy when aiming to estimate fluxes and loads of sediment‐associated chemical constituents. In this study, we address the potential of a portable ultraviolet–visible spectrophotometer (220–730 nm) to estimate suspended sediment properties in a resource efficient way. Several field deployable spectrophotometers are currently available for in‐stream measurements of environmental variables at high temporal resolution. These instruments have primarily been developed and used to quantify solute concentrations (e.g. dissolved organic carbon and NO3‐N), total concentrations of dissolved and particulate forms (e.g. total organic carbon) and turbidity. Here we argue that light absorbance values can be calibrated to estimate sediment properties. We present light absorbance data collected at 15‐min intervals in the Weierbach catchment (NW Luxembourg, 0.45 km2) from December 2013 to January 2015. In this proof‐of‐concept study, we performed a local calibration using suspended sediment loss‐on‐ignition (LOI) measurements as an example of suspended sediment property. We assessed the performance of several regression models that relate light absorbance measurements with the percentage weight LOI. The MM‐robust regression method presented the lowest standard error of prediction (0.48%) and was selected for calibration (adjusted r2 = 0.76 between observed and predicted values). The model was then used to predict LOI during a storm runoff event in December 2014. This study demonstrates that spectrophotometers can be used to estimate suspended sediment properties at high temporal resolution and for long‐time spans in a simple, non‐destructive and affordable manner. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The grain‐scale morphology of fluvial sediments is an important control on the character and dynamics of river systems; however current understanding of its role is limited by the difficulties of robustly quantifying field surface morphology. Terrestrial Laser Scanning (TLS) offers a new methodology for the rapid acquisition of high‐resolution and high‐precision surface elevation data from in situ sediments. To date, most environmental and fluvial applications of TLS have focused on large‐scale systems, capturing macroscale morphologies. Application of this new technology at scales necessary to characterize the complexity of grain‐scale fluvial sediments therefore requires a robust assessment of the quality and sources of errors in close‐range TLS data. This paper describes both laboratory and field experiments designed to evaluate close‐range TLS for sedimentological applications and to develop protocols for data acquisition. In the former, controlled experiments comprising high‐resolution scans of white, grey and black planes and a sphere were used to quantify the magnitude and source of three‐dimensional (3D) point errors resulting from a combination of surface geometry, reflectivity effects and inherent instrument precision. Subsequently, a methodology for the collection and processing of grain‐scale TLS data is described through an application to a coarse grained gravel system, the River Feshie (D50 32 to 63 mm). This stepwise strategy incorporates averaging repeat scans and filtering scan artefact and non‐surface points using local 3D search algorithms. The sensitivity of the results to the filter parameter values are assessed by careful internal validation of Digital Terrain Models (DTMs) created from the resulting point cloud data. The transferability of this methodology is assessed through application to a second river, Bury Green Brook, dominated by finer gravel (D50 18 to 33 mm). The factor limiting the resolution of DTMs created from this second dataset was found to be the relative sizes of the laser footprint and smallest grains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a new algorithm for estimating non‐minimum‐phase seismic wavelets by using the second‐ and higher‐order statistics (HOS) of the wavelets. In contrast to many, if not most, of the HOS‐based methods, the proposed method does not need to assume that subsurface seismic reflectivity is a non‐Gaussian, statistically independent and identically distributed random process. The amplitude and phase spectra of the wavelets are estimated, respectively, using the second‐order statistics (SOS) and third‐order moment (TOM) of the wavelets, which will, in turn, be derived from the HOS of the seismic traces. In our approach, the wavelets can be ‘calculated’ from seismic traces efficiently; no optimization or inversion is necessarily required. Very good results have been obtained by applying this method to both synthetic and real‐field data sets.  相似文献   

11.
The use of distributed data for model calibration is becoming more popular in the advent of the availability of spatially distributed observations. Hydrological model calibration has traditionally been carried out using single objective optimisation and only recently has been extended to a multi-objective optimisation domain. By formulating the calibration problem with several objectives, each objective relating to a set of observations, the parameter sets can be constrained more effectively. However, many previous multi-objective calibration studies do not consider individual observations or catchment responses separately, but instead utilises some form of aggregation of objectives. This paper proposes a multi-objective calibration approach that can efficiently handle many objectives using both clustering and preference ordered ranking. The algorithm is applied to calibrate the MIKE SHE distributed hydrologic model and tested on the Karup catchment in Denmark. The results indicate that the preferred solutions selected using the proposed algorithm are good compromise solutions and the parameter values are well defined. Clustering with Kohonen mapping was able to reduce the number of objective functions from 18 to 5. Calibration using the standard deviation of groundwater level residuals enabled us to identify a group of wells that may not be simulated properly, thus highlighting potential problems with the model parameterisation.  相似文献   

12.
Fletcher–Ponnambalam presented a new model for considering the balance equation of the storage volume of the reservoir using indicator functions. For stochastic inflows, the two storage moments of this balance equation, namely, the mean and variance, calculated using a random release policy were found to be quite accurate unlike any known models. Significantly, this model required no discretization of storage volumes or releases. In this paper, this work has been extended to two new cases: for multireservoir systems which require further consideration of the stochastic releases and for arbitrary distribution of inflows using the Beta-equivalent Kumaraswamy distribution which has a simpler form than Beta. The randomized release policies are easy to use even in a multireservoir problem. The Parambikulm-Aliyar Project from India is used as a case study. Results show accurate predictions of mean of storages in the multireservoir case but show the need for further improvement in the standard deviations of storages. The optimal benefits and the policies obtained are shown to be at least as good as obtained using Monte Carlo-based methods.  相似文献   

13.
A multi-event and multi-station inverse method is presented in the paper to simultaneously estimate the seismicmoments (Mo) and source comer frequencies (fc) of several Jiashi (Xinjiang, China) earthquakes, as well as theapparent Lg Q models for the paths from Jiashi to eight seismic stations (WMQ, AAK, TLG MAKZ, KUR, VOS,ZRN and CHK) in Central Asia. The resultant seismic moments correlate well with the Mo values obtained by Harvard University using the centroid moment tensor (CMT) inversion and the surface-wave magnitudes as well. Afterthe correction by a typical value of average radiation coefficient for regional SV waves, the Mo values from Lgspectral inversion are still close to the corresponding values obtained from CMT inversion. The obtained apparentQOLg values (Lg Q at 1 Hz) are consistent with the tectonic features of corresponding propagation paths. The QoLgvalues are 351±87, 349±86 and 300±27 for the paths from Jiashi to AAK, TLG and MAKZ, respectively. They aresmaller than QoLg values for the paths to KUR, VOS, ZRN and CHK, which are 553±72, 569±58, 550±57 and603±65, respectively. These results agree with the condition that the paths to AAK, TLG and MAKZ mainlypropagate through the mountainous Tianshan area where relatively strong seismic activities and large variations oftopography are exhibited, while the paths to KUR, VOS, ZRN and CHK mainly propagate through the stable areaof Kazak platform. The QoLg value for the path to WMQ is 462±56. This is also in agreement with the conditionthat the path to WMQ is basically along the border area between Tianshan Mountain and Tarim Basin, and alongthis path the variations of topography and crustal thickness are moderate in comparison with that along the path toMAKZ.  相似文献   

14.
In situ stress measurements are one of the important methods for studying the recent tectonic stress field and stress state. In this paper, the stress state and variation of stresses with depth in Mainland China are presented and analyzed on the basis ofin situ stress data measured by both hydrofracturing and overcoring techniques.  相似文献   

15.
16.
17.
Abstract

An estimated 50 000 1 of diesel fuel contaminated soil over a depth of 1.5 to 3.5 m (approximately 1.5% by weight in the soil) following fuel recovery operations at the site of a diesel spill. Laboratory treatability identified oxygen supply treatment as having significant potential to enhance bioremediation of the soil in situ. A bioventing system was designed and tested on a quarter of the site. Venting alone over a period of six months reduced total hydrocarbon concentrations by 10 to 30% to a depth of 3 m. Venting with nutrient addition resulted in a further reduction of 30% over a subsequent 6 month period to the full depth of 3.5 m.  相似文献   

18.
This study proposes an efficient new cleaning procedure for measuring in situ cosmogenic 10Be in olivines and pyroxenes. This chemical routine is specially designed to decontaminate the abundant meteoric 10Be from these minerals. The method was tested on mafic minerals from basaltic flows of Mt. Etna volcano and from Hawaiian flows and moraines. A sequential dissolution test shows that 10Be concentrations decrease with the number of cleaning steps until reaching a constant value. This is a necessary condition to demonstrate the efficiency of the method in properly decontaminating samples of meteoric 10Be. Moreover, cross-calibration with cosmogenic 3He measured within the same samples yielded a sea level high-latitude production rate of 4.5±0.4 at g−1 a−1 for cosmogenic 10Be in mafic minerals. This rate is within 1σ uncertainty of empirically or model-derived rates for 10Be on the same targets. Such concordance supports the consistency of the new method.  相似文献   

19.
Due to a lack of data on settling velocities (ws) and grain size distributions (GSDs) in ?oodplain environments, sedimentation models often use calibrated rather than measured parameters. Since the characteristics of suspended matter differ from those of deposited sediment, it is impossible to derive the ws and GSD from the latter. Therefore, one needs to measure in situ suspended sediment concentrations (SSCs), settling velocities, effective grain sizes and sedimentation ?uxes. For this purpose we used the LISST‐ST, a laser particle sizer combined with a settling tube. In 2002 (twice) and 2004, we located the LISST‐ST with an optical backscatter sensor and sediment traps in two ?oodplains in The Netherlands: one along the unembanked IJssel River, another along the embanked Waal River. Measurements revealed that the SSC in the ?oodplains varied in relation to the SSC in the river channel. Smaller ?ocs dominated the SSC, while larger ?ocs dominated the potential sedimentation ?uxes. The in situ GSD in the IJssel ?oodplain was signi?cantly coarser than in the Waal ?oodplain, while the dispersed median grain sizes were equal for both ?oodplains. Therefore, the dispersed median grain size was two to ?ve times smaller than the effective one. The in situ grain size exhibited a signi?cant positive relationship with ws, although the ws for the largest ?ocs showed high variability. Consequently, the variability in sedimentation ?uxes was also large. In the actual sedimentation ?uxes, and hence in sedimentation models, in situ grain sizes up to about 20 µm can be neglected. In ?oodplain sedimentation models the relation between settling velocity and in situ grain size can be used instead of Stokes's law, which is only valid for dispersed grain sizes. These models should also use adequate data on ?ow conditions as input, since these strongly in?uence the suspended sediment characteristics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A multi-event and multi-station inverse method is presented in the paper to simultaneously estimate the seismic moments (M 0) and source corner frequencies (f c) of several Jiashi (Xinjiang, China) earthquakes, as well as the apparent Lg Q models for the paths from Jiashi to eight seismic stations (WMQ, AAK, TLG, MAKZ, KUR, VOS, ZRN and CHK) in Central Asia. The resultant seismic moments correlate well with the M 0 values obtained by Harvard University using the centroid moment tensor (CMT) inversion and the surface-wave magnitudes as well. After the correction by a typical value of average radiation coefficient for regional SV waves, the M 0 values from Lg spectral inversion are still close to the corresponding values obtained from CMT inversion. The obtained apparent Q 0Lg values (Lg Q at 1 Hz) are consistent with the tectonic features of corresponding propagation paths. The Q 0Lg values are 351±87, 349±86 and 300±27 for the paths from Jiashi to AAK, TLG and MAKZ, respectively. They are smaller than Q 0Lg values for the paths to KUR, VOS, ZRN and CHK, which are 553±72, 569±58, 550±57 and 603±65, respectively. These results agree with the condition that the paths to AAK, TLG and MAKZ mainly propagate through the mountainous Tianshan area where relatively strong seismic activities and large variations of topography are exhibited, while the paths to KUR, VOS, ZRN and CHK mainly propagate through the stable area of Kazak platform. The Q 0Lg value for the path to WMQ is 462±56. This is also in agreement with the condition that the path to WMQ is basically along the border area between Tianshan Mountain and Tarim Basin, and along this path the variations of topography and crustal thickness are moderate in comparison with that along the path to MAKZ. Foundation item: Foundation of Verification Researches for Army Control Technology (413290102).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号