首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New continental crust was formed in the Svecofennian domain of the Baltic Shield c. 1.9 Ga ago. Approximately 0.1–0.15 Ga later, new crust accreted to the SW part of the Shield. In this paper an attempt is made, on the basis of gravity measurements and lithogeochemistry, to describe the tectonic processes responsible for the continental growth c. 1.75–1.8 Ga ago. The Transscandinavian Granite Porphyry Belt (TGPB) separates the Svecofennian domain from the polymetamorphic terrain of the SW Swedish gneiss region. Red orthogneisses occurring immediately west of the TGPB are the deformed equivalents of the TGPB type granitoids, while grey orthogneisses, displaying a tonalitic-granodioritic trend and situated further west, were generated in a »volcanic arc« environment. The TGPB granitoids and the red SW Swedish gneisses represent a transition from this volcanic arc type rock to contemporaneous »within-plate« type granites intruded in the Svecofennian crust. The volcanic arc was forced against the Svecofennian crust in which large tensional fracture zones ensued with strike directions normal to the collision front. In such tensional environments the »withinplate« type granites were generated. In the collision zone the crust was down-warped, and huge amounts of granitic melts were generated at the base of the crust. This TGPB Magma rose upwards utilizing the fracture zone between the arc rocks, generated slightly earlier, and the Svecofennian crust. A relatively thin upper part of the TGPB that spread laterally westwards became strongly deformed during the collision (i.e. the red SW Swedish gneisses), while the major deep-reaching TGPB root zone that was not completely solidified yet, acted as a buffer against the foliation front.
Zusammenfassung Vor 1,9 Milliarden Jahren kam es zur Neubildung von kontinentaler Kruste im svecofennischen Bereich des Baltischen Schildes. Ungefähr 100–150 Millionen Jahre später wurde im Südwesten des Schildes neue Kruste hinzugefügt. In diesem Artikel wird auf der Basis von Gravimetriemessungen und Lithogeochemie der Versuch unternommen die tektomschen Vorgänge, die zu diesem 1,75–1,8 Milliarden Jahre alten Krustenzuwachs führten, zu beschreiben.Der Transskandinavische-Granit-Porphyr-Gürtel (Transscandinavian-Granite-Porphyry-Belt/TGPB) trennt das Svecofennium von der polymetamorphen, im Südwesten Schwedens gelegenen Gneis-Region. Ein direkt westlich des TGPB gelegenes Vorkommen roter Orthogneise entspricht den deformierten TGPB Granitoiden. Graue Orthogneise, die weiter im Westen aufgeschlossen sind, zeigen eine mehr tonalitische bis granodioritische Zusammensetzung und werden auf einen vulkanischen Inselbogen zurückgeführt. Die TGPB Granitoide und die roten südwest-schwedischen Gneise stellen einen Übergang von den Inselbogen-Vulkaniten zu den zeitgleichen »Intra-Platten-Graniten« der svecofennischen Kruste dar. Der Inselbogen kollidierte mit der svecofennischen Kruste, es entstanden großräumige Bruchzonen mit Streichrichtungen senkrecht zur Kollisionsebene. Während des Zustands der hohen Druckspannung des Gebietes intrudierten die »Intra-Platten-Granite«. Innerhalb des Kollisionsbereiches wurde die Kruste nach unten gebogen, und so entstanden an der Basis der Kruste große Mengen granitischen Magmas. Dieses TGPB Magma stieg entlang der Störungszone innerhalb der Inselbogengesteine, die nur wenig älter sind, und der svecofennischen Kruste, auf. Nur ein, von relativ geringer Mächtigkeit, weiter westlich gelegener Teil des TGPB, die roten südwest-schwedischen Gneise, wurde während der Kollision intensiv deformiert. Dagegen war der Hauptanteil der tiefreichenden TGPB Wurzelzone noch nicht vollständig erstarrt und wirkte deshalb wie eine Pufferzone gegen die Schieferungsfront.

Résumé De la croûte continentale nouvelle s'est formée il y a 1,9 Ga dans le domaine des Svecofennides (Bouclier baltique). Environ 100 à 150 Ma plus tard, de la croûte nouvelle s'est accrétionnée à la bordure sud-ouest du bouclier. Cette note basée sur des mesures de gravité et la lithogéochimie, présente un essai d'analyse des processus tectoniques responsables de cette croissance continentale d'âge 1,75 à 1,8 Ga. Le «Transcandinavian Granite Porphygry Belt» (TGPB) sépare le domaine svécofennien des gneiss polymétamorphiques du sud-ouest de la Suède. Immédiatement à l'ouest de TGPB affleurent des orthogneiss rouges qui représentent l'équivalent déformé de granitoïdes du TGPB, tandis que des orthogneiss gris de tendance tonalitique-granodioritique, situés plus à l'ouest, ont été engendrées dans un environnement d'arc volcanique. Les granitoïdes du TGPB et les gneiss rouges du sud-ouest de la Suède représentent une transition entre ces produits d'arc volcanique et les granites intra-plaque de même âge intrudés dans la croûte svécofennienne. L'arc volcanique a été accrétionné à la croûte svécofennienne avec production dans celleci de grandes fractures d'extension perpendiculaires au front de collision. C'est dans ce domaine en extension que les granites intra-plaque se sont mis en place. Dans la zone de collision, la croûte s'est incurvée vers le bas et de grandes quantités de liquides granitiques ont été engendrées à la base de la croûte. Ces magmas TGPB sont montés à la faveur de la zone fracturée entre les roches de l'arc engendrée un peu plus tôt, et la croûte svécofennienne. Seule une fraction supérieure relativement mince du TGPB, développée vers l'ouest, a subi une déformation importante au cours de la collision, pour former les gneiss rouges du sud-ouest de la Suède; par contre, la partie principale de la racine profonde du TGPB, qui n'était pas encore entièrement solidifiée, a joné le role tampon en avant du front de foliation.

, 1,9 100–150 - . - (Transscandinavian Granite-Porphyry-Belt - TGPB) , - . TGPB , , , - , . TGPB - . , , . («within plate» type granites) , . . TGPB , , . TGPB, , - , . TGPB, , .
  相似文献   

2.
The first Sm-Nd and Rb-Sr dates were obtained for the dynamometamorphic processes associated with the origin and evolution of the Moncha Tundra fault, Kola Peninsula, which separates two large Early Paleoproterozoic layered intrusions: the Monchegorsk Ni-bearing mafic-ultramafic intrusion and the Main Range massif of predominantly mafic composition. The fault belongs to the regional Central Kola fault system, whose age was unknown. The material for the dating included metamorphic minerals from blastomylonitic rocks recovered by structural borehole M-1. Mineralogical thermobarometry suggests that the metamorphism occurred at 6.9–7.6 kbar and 620–640°C, which correspond to the amphibolite facies. The Sr and Nd isotopic systems were re-equilibrated, and their study allowed us to date the dynamometamorphic processes using mineral isochrons. It was established that the Moncha Tundra fault, and, respectively, the whole Central Kola fault system appeared in the middle of Paleoproterozoic ~2.0–1.9 Ga, simultaneously with the Svecofennian orogen in the central part of the region and the Lapland-Kola orogen in its northeastern part. Another episode of dynamometamorphism that occurred at 1.60–1.65 Ga is envisaged.  相似文献   

3.
The West Pontides tectonic belt of northern Turkey comprises a Lower Ordovician–Lower Carboniferous transgressive sequence. A stratigraphic basement to this Paleozoic sequence is exposed in the Bolu area. The tectono-stratigraphy of the basement closely resemble that of the Cadomian belt of western Europe. Three rock units forming the basement imply development of an Andean-type active continental margin during the pre-Early Ordovician period. High-grade metamorphics (the Sünnice Group), granitoids (the Bolu Granitoid Complex) and evolved felsic meta-volcanic rocks (the Ça?urtepe Formation) are exposed unconformably beneath the Lower Ordovician fluvial clastics, between the Bolu-Yedigöller area, to the north of Bolu. The Bolu Granitoid Complex comprises a group of intrusive rocks of variable composition and size, generated through multiple episodes of magmatism, and is represented by two separate intrusive bodies within the study area, the Tüllükiri? Pluton in the west and the Kap?kaya Pluton in the east. Both plutons are mainly tonalite and granodiorite in composition. More felsic and mafic compositional varieties also occur. Major and trace element chemical characteristics of the granitoids, as well as biotite chemistry, indicate that these are volcanic arc-type granitoids and are products of an immature arc developed during early stages of a subduction. Furthermore, textural and chemical characteristics of the plutons show that these are subvolcanic intrusions, emplaced at shallow depths, and are calc-alkaline in composition. The granitoidic plutons intrude the Ça?urtepe Formation. The Ça?urtepe Formation is represented by arc-type volcanics and volcaniclastics. Both the Ça?urtepe Formation and the granitoids represent subduction-zone magmatism constructed on a continental crust, represented by the Sünnice Group. The history is very similar to Cadomian active margins as exposed in western Europe (i.e., the North Armorican and Bohemia massifs) and therefore the basement to the Paleozoic of the West Pontides is considered to be a preserved remnant of the Cadomian belt.  相似文献   

4.
High-temperature, high-pressure eclogite and garnet pyroxenite occur as lenses in garnet peridotite bodies of the Gföhl nappe in the Bohemian Massif. The high-pressure assemblages formed in the mantle and are important for allowing investigations of mantle compositions and processes. Eclogite is distinguished from garnet pyroxenite on the basis of elemental composition, with mg number <80, Na2O > 0.75 wt.%, Cr2O3 < 0.15 wt.% and Ni < 400 ppm. Considerable scatter in two-element variation diagrams and the common modal layering of some eclogite bodies indicate the importance of crystal accumulation in eclogite and garnet pyroxenite petrogenesis. A wide range in isotopic composition of clinopyroxene separates [Nd, +5.4 to –6.0; (87Sr/86Sr)i, 0.70314–0.71445; 18OSMOW, 3.8–5.8%o] requires that subducted oceanic crust is a component in some melts from which eclogite and garnet pyroxenite crystallized. Variscan Sm-Nd ages were obtained for garnet-clinopyroxene pairs from Dobeovice eclogite (338 Ma), Úhrov eclogite (344 Ma) and Nové Dvory garnet pyroxenite (343 Ma). Gföhl eclogite and garnet pyroxenite formed by high-pressure crystal accumulation (±trapped melt) from transient melts in the lithosphere, and the source of such melts was subducted, hydrothermally altered oceanic crust, including subducted sediments. Much of the chemical variation in the eclogites can be explained by simple fractional crystallization, whereas variation in the pyroxenites indicates fractional crystallization accompanied by some assimilation of the peridotite host.  相似文献   

5.

The paper discusses new SHRIMP II data on the absolute age of riebeckite granite of the Elinovskii massif, Gorny Altai, and presents comparative characteristics of the morphology and chemical composition of magmatic and hydrothermal zircon obtained by LA-ICP-MS. It is shown that the revealed differences between the two types of zircon are related to the peculiarities of the fluid regime of granitoid melts. Both types of zircon manifest the tetrad effect of M-type REE fractionation.

  相似文献   

6.
The Serbo-Macedonian Massif (SMM) represents a composite crystalline belt within the Eastern European Alpine orogen, outcropping from the Pannonian basin in the north, to the Aegean Sea in the south. The central parts of the massif (i.e. southeastern Serbia, southwestern Bulgaria, eastern Macedonia) consist of the medium- to high-grade Lower Complex, and the low-grade Vlasina Unit. New results of U–Pb LA-ICP-MS analyses, coupled with geochemical analyses of Hf isotopes on magmatic and detrital zircons, and main and trace element concentrations in whole-rock samples suggest that the central SMM and the basement of the adjacent units (i.e. Eastern Veles series and Struma Unit) originated in the central parts of the northern margin of Gondwana. These data provided a basis for a revised tectonic model of the evolution of the SMM from the late Ediacaran to the Early Triassic.The earliest magmatism in the Lower Complex, Vlasina Unit and the basement of Struma Unit is related to the activity along the late Cadomian magmatic arc (562–522 Ma). Subsequent stage of early Palaeozoic igneous activity is associated with the reactivation of subduction below the Lower Complex and the Eastern Veles series during the Early Ordovician (490–478 Ma), emplacement of mafic dykes in the Lower Complex due to aborted rifting in the Middle Ordovician (472–456 Ma), and felsic within-plate magmatism in the early Silurian (439 ± 2 Ma). The third magmatic stage is represented by Carboniferous late to post-collisional granites (328–304 Ma). These granites intrude the gneisses of the Lower Complex, in which the youngest deformed igneous rocks are of early Silurian age, thus constraining the high-strain deformation and peak metamorphism to the Variscan orogeny. The Permian–Triassic (255–253 Ma) stage of late- to post-collisional and within-plate felsic magmatism is related to the opening of the Mesozoic Tethys.  相似文献   

7.
The Archean provinces and lithotectonic complexes of the Baltic (Fennoscandian) Shield are considered. The supracrustal complexes are classified by age: <3.2, 3.10–2.90, 2.90–2.82, 2.82–2.75, and 2.75–2.65 Ga. The data on Archean granitoid complexes and metamorphic events are mentioned briefly, whereas the recently found fragments of the Archean ophiolitic and eclogite-bearing associations are discussed in more detail. The Paleoarchean rocks and sporadic detrital grains of Paleoarchean zircons have been found in the Baltic Shield; however, the relatively large fragments of the continental crust likely began to form only in the Mesoarchean (3.2–3.1 Ga ago), when the first microcontinents, e.g., Vodlozero and Iisalmi, were created. The main body of the continental crust was formed 2.90–2.65 Ga ago. The available information on the Paleoarchean complexes of the Baltic Shield is thus far too scanty for judgment on their formation conditions. The geologic, petrologic, isotopic, and geochronological data on the Meso-and Neoarchean lithotectonic complexes testify to their formation in the geodynamic settings comparable with those known in Phanerozoic: subduction-related (ensialic and ensimatic), collisional, spreading-related, continental rifting, and the setting related to mantle plumes.  相似文献   

8.
The subaerial surface of Koolau volcano is composed of lavas that define the distinctive endmember composition for Hawaiian shield lavas, known as the Koolau component, now designated as the Makapuu-stage. The geochemical characteristics of lavas recovered by the Koolau Scientific Drilling Project (KSDP) show that this distinctive composition forms a <300-m thick veneer. Below this veneer, from ~300m to 470 m below sea level, Koolau shield lavas transition to a composition similar to Mauna Loa lavas, now designated as the Kalihi-stage. This transition was gradual, occurring over >80 ka; therefore it was not caused by an abrupt event, such as a landslide. Among all Koolau shield lavas, there are correlations between radiogenic isotopic ratios of Sr, Nd and Pb and compositional characteristics, such as SiO2 content (adjusted to be in equilibrium with Fo90 olivine), Sr/Nb, La/Nb and Th/La. These long-term compositional and isotopic trends show that as the shield aged, there was an increasing role for an ancient recycled marine sediment component (<3% of the source) accompanied by up to 20% SiO2-rich dacitic melt. This melt was generated by partial melting of garnet pyroxenite, probably kilometers in size, that formed from recycled basaltic oceanic crust. In detail, time series analyses of depth profiles of Al2O3/CaO, Sr/Nb, La/Nb and Th/La in the KSDP drill core show correlations among these ratios indicating that recycled oceanic crust contributed episodically, ~29 ka period, to the magma source during the prolonged transition from Kalihi- to Makapuu-stage lava compositions. The long-term geochemical trends show that recycled oceanic crust was increasingly important as the Koolau shield moved away from the plume and encountered lower temperature.  相似文献   

9.
Siliciclastic metasediments of the Ladoga Group that is the Kalevian stratotype in Karelia correlative with the Kalevian siliciclastic succession in Finland are studied in terms of geochemistry and Sm-Nd isotopic systematics. The results obtained show that rocks in the Ladoga Group lower part are enriched, as compared to rocks of the upper part, in TiO2, Fe2O3, MgO, Cr, Co, Ni, and Sc, being comparatively depleted in Al2O3 and Th that is a result of compositional changes in provenances. The Sm-Nd isotopic data evidence that siliciclastic sediments of the Ladoga Group have accumulated during the erosion of rocks, which originated at the time of the Archean and Early Proterozoic crust-forming processes. Siliciclastic material with the Archean and Early Proterozoic TNd(DM) values, which are characteristic of metasediments in the group lower part, was derived respectively from granite gneisses of the Archean basement in the Karelian megablock of the Baltic Shield and from volcanic rocks of the Sortavala Group. Volcanic rocks of island-arc terranes of the Svecofennian foldbelt represented main source of siliciclastic material that accumulated in upper part of the succession.  相似文献   

10.
11.
Whether a Neoarchean basement existing in the Songnen massif is currently debated. Identification of Archean magmatism from the Songnen Massif is helpful to resolve this issue. Here, we report newly discovered Neoarchean Shanquan pluton in the Western Songnen Massif. These Neoarchean Shanquan pluton are mainly composed of granites that are exposed near the town of Shanquan in Heilongjiang Province. LA-ICP-MS zircon U-Pb dating reveals that the sample 2015TW1 has an upper intercept age of 2801 ± ...  相似文献   

12.
Important mafic–ultramafic masses have been located for the first time in the intersection area between the Keraf Shear Zone and the Nakasib Suture Zone of the Nubian Shield. The masses, comprising most of the members of the ophiolite suite, are Sotrebab and Qurun complexes east of the Nile, and Fadllab complex west of the Nile. The new mafic–ultramafic masses are located on the same trend of the ophiolitic masses decorating the Nakasib Suture. A typical complete ophiolite sequence has not been observed in these complexes, nevertheless, the mafic–ultramafic rocks comprise basal unit of serpentinite and talc chlorite schists overlain by a thick cumulate facies of peridotites, pyroxenites and layered gabbros overlain by basaltic pillow lavas with dolerite dykes and screens of massive gabbros. Associated with pillow lavas are thin layers of carbonates and chert. The best section of cumulate mafic–ultramafic units has been observed in Jebel Qurun and El Fadlab complexes, comprising peridotites, pyroxenites and layered gabbros. Dolerite dykes and screens of massive gabbros have been observed with basaltic pillow lava sections in Wadi Dar Tawaiy. The basal ultramafic units of the complexes have been fully or partly retrograded to chlorite magnetite schist and talc to talc-carbonate rocks (listowenites), especially in the Jebel Qurun and Sotrebab complexes. Petrographically, the gabbros (layered and massive) and the basaltic pillow lavas show mineral assemblages of epidote amphibolite facies. The mafic members from the three complexes show a clear tholeiitic trend and oceanic floor affinity. The pillow lavas plot in the field of oceanic floor basalt, namely in the back arc field. Primitive mantle normalized spider diagram of the pillow lavas reveals a closer correspondence to Enrich-Mid-Oceanic Ridge Basalt (E-MORB) type, which is confirmed by the flat chondrite normalized Rare Earth Elements (REE) pattern. Field, petrographical and geochemical evidence supports ophiolitic origin of the three complexes. The newly discovered ophiolitic complexes mark the western continuation of the Nakasib Suture Zone.  相似文献   

13.
The Rb-Sr age of metasomatic rocks from four gold deposits and occurrences localized in Archean granite-greenstone belts of the western, central, and southern Karelian Craton of the Baltic Shield has been determined. At the Pedrolampi deposit in central Karelia, the dated Au-bearing beresite and quartz-carbonate veins are located in the shear zone and replace Mesoarchean (~2.9 Ga) mafic and felsic metavolcanic rocks of the Koikar-Kobozero greenstone belt. At the Taloveis ore occurrence in the Kostomuksha greenstone belt of western Karelia, the dated beresite replaces Neoarchean (~2.7 Ga) granitoids and is conjugated with quartz veins in the shear zone. At the Faddeinkelja occurrence of southern Karelia, Aubearing beresite in the large tectonic zone, which transects Archean granite and Paleoproterozoic mafic dikes, has been studied. At the Hatunoja occurrence in the Jalonvaara greenstone belt of southwestern Karelia, the studied quartz veins and related gold mineralization are localized in Archean granitoids. The Rb-Sr isochrons based on whole-rock samples and minerals from ore-bearing and metasomatic wall rocks and veins yielded ~1.7 Ga for all studied objects. This age is interpreted as the time of development of ore-bearing tectonic zones and ore-forming hydrothermal metasomatic alteration. New isotopic data in combination with the results obtained by our precursors allow us to recognize the Paleoproterozoic stage of gold mineralization in the Karelian Craton. This stage was unrelated to the Archean crust formation in the Karelian Block and is a repercussion of the Paleoproterozoic (2.0–1.7 Ga) crust-forming tectonic cycle, which gave rise to the formation of the Svecofennian and Lapland-Kola foldbelts in the framework of the Karelain Craton. The oreforming capability of Paleoproterozoic tectonics in the Archean complexes of the Karelian Craton was probably not great, and its main role consisted in reworking of the Archean gold mineralization of various genetic types, including the inferred orogenic mesothermal gold concentrations.  相似文献   

14.
15.
16.
17.
The Postsvecokarelian development of the Baltic Shield shows a parallel development with tension and dolerite intrusions in the core zone and granite intrusions, compression and crustal shortening in the south-western margin. A crustforming event with calk-alkalic granitoid intrusions which with time moves westwards is followed by remelting and intrusion of alkali-intermediate granites and metamorphism. The south-western margin of the Shield probably was a stable ocean/continent border zone for a very long time. In spite of several attempts, no conclusive testable model for the development can be put forward today.
Zusammenfassung Die postsvekokarelische Entwicklung des Baltischen Schildes ist von einer zeitgemäßen Parallelität mit Tension und Diabasintrusionen in der östlichen Kernzone und Granitintrusionen, Kompression und Krustenverkürzung in der südwestlichen Marginalzone gekennzeichnet. Eine Phase mit Krustenbildung, die mit der Zeit nach Westen rückt, und wo kalkalkalische Granitoide als wesentlichstes neugebildetes Gestein auftreten, wird von Metamorphose und erneutem Aufschmelzen und Intrusionen alkaliintermediärer Granite gefolgt. Die südwestliche Marginalzone des Schildes war ein stabiler Ozean/Kontinent-Grenzbereich während einer langen Zeitperiode. Ein testbares endgültiges Modell der Entwicklung kann heute trotz mehrerer Versuche nicht aufgestellt werden.

Résumé Le développement postsvécokarélien du bouclier baltique est caractérisé par un parallélisme dans le temps entre l'extension et l'intrusion de diabases dans la zone centrale de l'Est et par des intrusions granitiques, une compression et un rétrécissement crustal dans la zone marginale du Sud-ouest. Une phase avec formation d'une croûte, qui se propage vers l'ouest, et au cours de laquelle les nouvelles roches formées sont essentiellement des granitoïdes calco-alcalins, est suivie d'un métamorphisme et d'une palingenèse avec intrusions de granites alcalins intermédiaires. La zone marginale du Sud-ouest du bouclier était un domaine-limite océan-continent »stable«, pendant une longue période de temps. Une modélisation controlable du développement ne peut être avancée aujourd'hui malgré plusieurs tentatives.

- , . , , - , . - /. .
  相似文献   

18.
Late Paleoproterozoic dikes of the Maimakan Complex were studied in the Ulkan-Uchur district at the eastern margin of the Aldan-Stanovoi Shield. The dikes are parallel or arranged en echelon in the Uchur-Uyan, South Uchur, and Ukikan fields of dike swarms. The spatial distribution of the dike swarms pertaining to the Maimakan Complex in the Ulkan Trough and its framework shows that the area of their intersection is located in the center of the Ulkan granitoid batholith. The basic dikes, which are distinguished by elevated contents of alkali metals, Fe, Ti, and P in combination with a low Mg content, are defined as moderately alkaline rocks transitional from tholeiitic to alkaline series similar in composition to within-plate basalts and E-MORB. The REE pattern is comparable to that of tholeiitic and subalkaline series in extensional settings. Along with the geological data, this indicates that the complex was formed under conditions of intracontinental extension. As follows from geological relationships, the age of dikes is estimated as 1670–1715 Ma.  相似文献   

19.
The Onega plateau constitutes part of a vast continental flood basalt province in the SE Baltic Shield. It consists of Jatulian-Ludikovian submarine volcanic, volcaniclastic and sedimentary sequences attaining in places 4.5?km in thickness. The parental magmas of the lavas contained ~10% MgO and were derived from melts generated in the garnet stability field at depths 80–100?km. The Sm-Nd mineral and Pb-Pb whole-rock isochron ages of 1975?±?24 and 1980?±?57 Ma for the upper part of the plateau and a SHRIMP U-Pb zircon age of 1976?±?9 Ma for its lower part imply the formation of the entire sequence within a short time span. These ages coincide with those of picrites in the Pechenga-Imandra belt (the Kola Peninsula) and komatiites and basalts in the Karasjok-Kittilä belt (Norway and Finnmark). Together with lithostratigraphic, chemical and isotope evidence, these ages suggest the derivation of the three provinces from a single large (~2000?km in diameter) mantle plume. These plume-generated magmas covered ~600,000?km2 of the Baltic Shield and represent a major contribution of juvenile material to the existing continental crust at 2.0 Ga. The uppermost Onega plateau lavas have high (Nb/Th)N?=?1.4–2.4, (Nb/La)N= 1.1–1.3, positive ?Nd(T) of +3.2 and unradiogenic Pb-isotope composition (μ1?= 8.57), comparable with those of modern oceanic plume-derived magmas (oceanic flood basalt and ocean island basalt). These parameters are regarded as source characteristics. The lower sequences have (Nb/Th)N= 0.58–1.2, (Nb/La)N= 0.52–0.88 and ?Nd(T) =?2.6. They have experienced mixing with 10–30% of continental crust and resemble contaminated lavas from other continental flood basalt provinces. The estimated Nb/U ratios of 53?±?4 in the uncontaminated rocks are similar to those found in the modern mantle (~47) suggesting that by 2.0 Ga a volume of continental crust similar to the present-day value already existed.  相似文献   

20.
Summary The Melibocus Massif forms a tonalite pluton in the W’ Bergstr?sser Odenwald, which is interpreted as part of a magmatic arc of Devonian to Carboniferous age. Dikes of various compositions intrude frequently this tonalite. Different dike-lithologies are associated with different strike directions. Most dikes show evidence of high-temperature shearing. A probable maximum paleostress direction of ca. 060° can be estimated, i.e. nearly parallel to the known Variscan subduction zone in the Northwest. Due to their ductile deformation under conditions around the Ar-closing temperature of amphibole, intrusion likely occurred during the Carboniferous (Mississippian). The gabbroic to dioritic dikes (malchites) have calc-alkaline composition. Comparison with modern analogues suggests subduction-related arc magmatism. Rare earth element distributions indicate more than 5% partial melting of the mantle source with limited amounts of residual garnet. In contrast to the tonalite pluton the granitoid dikes (alsbachites) are of S-type origin, as indicated by primary muscovite and chemical composition. This requires involvement of continental material in the dike’s source rather than in the tonalite host rock’s source. The trace element chemistry of these dikes indicates magma formation in a convergent plate tectonic situation, i.e. a magmatic arc regime. Therefore, the dikes are probably the late part of the same subduction-related magmatism, which produced the tonalitic and other plutons of the Bergstr?sser Odenwald. In contrast to the large pluton-forming magmas, formation of the dikes during late or post-collisional extension or transtension followed by a phase of compression or transpression is probable.
Zusammenfassung Geochemie, tektonische Stellung und geodynamische Signifikanz sp?torogener G?nge im Melibocus Massiv, Bergstr?sser Odenwald Der Melibokus Tonalit-Pluton geh?rt zum Bergstr?sser Odenwald, der als Teil eines devonisch-karbonischen magmatischen Bogens interpretiert wird. In diesem Pluton treten sehr h?ufig magmatische G?nge unterschiedlicher Zusammensetzung auf. Die Arbeit zeigt, dass die G?nge unterschiedlicher Zusammensetzung unterschiedliche Streichrichtungen haben. Die meisten der untersuchten G?nge zeigen Hochtemperatur-Schergefüge. Aus der Lage der zerscherten G?nge l?sst sich eine Pal?ostressrichtung mit 060° für Sigma 1 ableiten. Diese Richtung weicht nur unwesentlich von der bekannten variskischen Subduktionszone im Nordwesten ab. Aufgrund ihrer Hochtemperatur-Gefüge, die im Bereich der Schlie?ungstemperatur von Ar in Hornblenden gebildet wurden, ist das Alter der G?nge wahrscheinlich ebenfalls als Karbon (Mississippian) einzustufen. Die gabbroiden bis dioritischen G?nge (Malchite) haben eine kalkalkaline Zusammensetzung. Der Vergleich mit rezenten Magmatiten deutet auf eine Entstehung in einem magmatischen Bogen (Kontinentalrand) hin. Die Seltenerdelementverteilung der G?nge zeigt einen wahrscheinlichen Aufschmelzungsgrad der Mantelquellregion von über 5% bei einem geringen Anteil von residualem Granat an. Im Gegensatz zu den tonalitischen Nebengesteinen zeigen die granitoiden G?nge anhand ihrer modalen (Muskovit) als auch chemischen Zusammensetzung S-Typ-Charakter. Dies bedeutet eine h?here Beteiligung krustaler Komponente in der Magmenquelle als dies für den Tonalit angenommen werden darf. Die Spurenelementchemie der granitoiden G?nge zeigt ebenfalls eine Bildung in einem konvergenten plattentektonischen Regime, d.h. innerhalb eines magmatischen Bogens. Die G?nge stellen somit vermutlich das Produkt eines sp?ten Abschnittes des subduktionsbezogenen Magmatismus, der auch die Tonalite und andere Plutone im zentralen Bergstr?sser Odenwald geschaffen hat, dar. Im Gegensatz zu dem Magmatismus der die Plutone erzeugt hat, sind die G?nge wahrscheinlich gegen Ende der Kollision oder nachfolgend auf diese in eine sich dehnende Kruste intrudiert und in einem nachfolgenden kompressiven Regime deformiert worden.


Received August 31, 1999; revised version accepted October 9, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号