首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A five dimensional Kaluza-Klein dark energy model with variable equation of state (EoS) parameter and a constant deceleration parameter is presented in Saez and Ballester (Phys. Lett. A 113:467, 1986) scalar-tensor theory of gravitation. Some physical and kinematical properties of the model are also discussed.  相似文献   

2.
A five dimensional Kaluza-Klein space-time is considered in the presence of prefect fluid source in the general scalar-tensor theory of gravitation proposed by Nordtvedt (Astrophys. J. 161:1069, 1970) with the help of special law of variation for Hubble’s parameter given by Bermann (Nuovo Cimento 74B:182, 1983). A cosmological model with a negative constant deceleration parameter is obtained in this theory. Some physical properties of the model are also discussed.  相似文献   

3.
A locally rotationally symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the scalar-tensor theory proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986). The scalar-tensor field equations have been solved by applying variation law for generalized Hubble’s parameter given by Bermann (Nuovo Cimento 74:182, 1983). The physical and kinematical properties of the model are also discussed.  相似文献   

4.
An axially symmetric non-static space-time is considered in the presence of thick domain walls in the scalar–tensor theories formulated by Brans and Dicke (Phys. Rev. 124:925, 1961) and Saez and Ballester (Phys. Lett. A 113:467, 1985). Exact cosmological models, in both the theories, are presented with the help of special law of variation proposed by Berman (Nuovo Cim. B 74:182, 1983), for Hubble’s parameter. Some physical and kinematical properties of the models are discussed.   相似文献   

5.
A spatially homogeneous Bianchi type-III space-time is considered in the presence of perfect fluid source in the frame work of f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) with the help of a special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento B 74:182, 1983). A cosmological model with an appropriate choice of the function f(T) has been constructed. The physical behavior of the model is studied.  相似文献   

6.
A new class of dark energy models in a Locally Rotationally Symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the present paper. The Einstein’s field equations have been solved by applying a variation law for generalized Hubble’s parameter given by Berman: Nuovo Cimento 74:182 (1983) which generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The dark energy EoS parameter ω is found to be time dependent and its existing range for both models is in good agreement with the three recent observations of (i) SNe Ia data (Knop et al.: Astrophys. J. 598:102 (2003)), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al.: Astrophys. J. 606:702 (2004)) and latest (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al.: Astrophys. J. Suppl. 180:225 (2009); Komatsu et al. Astrophys. J. Suppl. 180:330 (2009)). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric behaviour of the universe have also been discussed in detail.  相似文献   

7.
Recently Varvoglis and Hadjidemetriou (Astrophys. Space Sci. doi:, 2012; hereafter referred to as paper VH) have raised two points concerning the model of the restricted three-body problem with variable mass presented in our paper (Zhang et al. in Astrophys. Space Sci. 337:107, 2012; hereafter referred to as paper ZZX) and made intensive investigations of this model. These points and investigations are very useful and here we provide some explanation and supplementary specification regarding the model presented in the paper ZZX.  相似文献   

8.
A new dark energy model in anisotropic Bianchi type-III space-time with variable equation of state (EoS) parameter has been investigated in the present paper. To get the deterministic model, we consider that the expansion θ in the model is proportional to the eigen value s2 2\sigma^{2}_{~2} of the shear tensor sj i\sigma^{j}_{~i}. The EoS parameter ω is found to be time dependent and its existing range for this model is in good agreement with the recent observations of SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003) and SNe Ia data with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004). It has been suggested that the dark energy that explains the observed accelerating expansion of the universe may arise due to the contribution to the vacuum energy of the EoS in a time dependent background. Some physical aspects of dark energy model are also discussed.  相似文献   

9.
New improvements on the calculation of Equation of State (EOS) for laboratory astrophysics applications are presented. A new empirical multiplier for the EOS is included to the original quotidian equation of state (QEOS) model developed by More et al. (Phys. Fluids 31:3059, 1988) to adapt it to the available experimental data and ab initio molecular dynamics simulation. This model is used to obtain EOS tables suited for an adaptive mesh refinement hydrodynamic code with radiation transport for high energy density plasmas simulations called ARWEN introduced by Ogando and Velarde (J. Quant. Spectrosc. Radiat. Transf. 71(2–6):541, 2001).  相似文献   

10.
In this paper, we have investigated spatially homogeneous isotropic Friedmann cosmological model with bulk viscosity and zero-mass scalar field in Lyra manifold. The cosmological models are obtained with the help of the special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento 74B:182, 1983) and power law relation. Some physical properties of the models are discussed.  相似文献   

11.
We show in this article that charged fluid with pressure derived by Bijalwan (Astrophys. Space. Sci. doi:, 2011a) can be used to model classical electron, quark, neutron stars and pulsar with charge matter, quasi black hole, white dwarf, super-dense star etc. Recent analysis by Bijalwan (Astrophys. Space. Sci., 2011d) that all charged fluid solutions in terms of pressure mimic the classical electron model are partially correct because solutions by Bijalwan (Astrophys. Space. Sci. doi:, 2011a) may possess a neutral counterpart. In this paper we characterized solutions in terms of pressure for charged fluids that have and do not have a well behaved neutral counter part considering same spatial component of metric e λ for neutral and charged fluids. We discussed solution by Gupta and Maurya (Astrophys. Space Sci. 331(1):135–144, 2010a) and solutions by Bijalwan (Astrophys. Space Sci. doi:, 2011b; Astrophys. Space Sci. doi:, 2011c; Astrophys. Space Sci., 2011d) such that charged fluids possess and do not possess a neutral counterpart as special cases, respectively. For brevity, we only present some analytical results in this paper.  相似文献   

12.
In this paper we study the evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with barotropic fluid and dark energy by revisiting the recent results (Amirhashchi et al. in Chin. Phys. Lett. 28:039801, 2011a). To prevail the deterministic solution we select the scale factor which generates a time-dependent deceleration parameter (DP), representing a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. We consider the two cases of an interacting and non-interacting two-fluid (barotropic and dark energy) scenario and obtained general results. The cosmic jerk parameter in our derived model is also found to be in good agreement with the recent data of astrophysical observations under the suitable condition. The physical aspects of the models and the stability of the corresponding solutions are also discussed.  相似文献   

13.
Field equations in the presence of cosmic string source are obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124, 925 (1961)) with the aid of a five-dimensional Kaluza–Klein metric. An exact string cosmological model is presented which represents a five-dimensional Reddy string (Astrophys. Space Sci. 286, 2003b) in Brans–Dicke theory. Some physical properties of the model are also discussed  相似文献   

14.
An exact Bianchi type-V perfect fluid cosmological model is obtained in a scalar tensor theory proposed by Sen (Z. Phys. 149:311, 1957) based on Lyra Manifold in case of β is a constant and it is shown that this cosmological model exists only in the case of Radiation Universe (ρ=3p) if β is a function of ‘t’ using negative constant deceleration parameter. Some physical and geometrical properties of these models are discussed.  相似文献   

15.
A time-dependent model for the energy of a flaring solar active region is presented based on an existing stochastic jump-transition model (Wheatland and Glukhov in Astrophys. J. 494, 858, 1998; Wheatland in Astrophys. J. 679, 1621, 2008 and Solar Phys. 255, 211, 2009). The magnetic free energy of an active region is assumed to vary in time due to a prescribed (deterministic) rate of energy input and prescribed (random) jumps downwards in energy due to flares. The existing model reproduces observed flare statistics, in particular flare frequency – size and waiting-time distributions, but modeling presented to date has considered only the time-independent choices of constant energy input and constant flare-transition rates with a power-law distribution in energy. These choices may be appropriate for a solar active region producing a constant mean rate of flares. However, many solar active regions exhibit time variation in their flare productivity, as exemplified by NOAA active region (AR) 11029, observed during October – November 2009 (Wheatland in Astrophys. J. 710, 1324, 2010). Time variation is incorporated into the jump-transition model for two cases: (1) a step change in the rates of flare transitions, and (2) a step change in the rate of energy supply to the system. Analytic arguments are presented describing the qualitative behavior of the system in the two cases. In each case the system adjusts by shifting to a new stationary state over a relaxation time which is estimated analytically. The model exhibits flare-like event statistics. In each case the frequency – energy distribution is a power law for flare energies less than a time-dependent rollover set by the largest energy the system is likely to attain at a given time. The rollover is not observed if the mean free energy of the system is sufficiently large. For Case 1, the model exhibits a double exponential waiting-time distribution, corresponding to flaring at a constant mean rate during two intervals (before and after the step change), if the average energy of the system is large. For Case 2 the waiting-time distribution is a simple exponential, again provided the average energy of the system is large. Monte Carlo simulations of Case 1 are presented which confirm the estimate for the relaxation time and the expected forms of the frequency – energy and waiting-time distributions. The simulation results provide a qualitative model for observed flare statistics in AR 11029.  相似文献   

16.
B. C. Low 《Solar physics》2010,266(2):277-291
This paper follows up on the conclusion by Craig and Sneyd (2005) that the solutions to a linearized magnetostatic problem are counterexamples to the magnetostatic model of Parker (1972), demonstrating a general absence of continuous equilibrium for a magnetic field with an arbitrarily prescribed topology. The analysis presented here shows that Craig and Sneyd had incorrectly rejected an important subset of those solutions in a misunderstanding of the Parker model. The complete set of solutions when correctly interpreted is, in fact, physically consistent with the Parker model. A general discussion of the Parker theory of spontaneous current sheets is given.  相似文献   

17.
A self-consistent method has been evolved to infer physical parameters like density, radiation field and abundances using line and continuum radiations as diagnostics. For that purpose, we first calculate the temperatures of graphite and silicate grains using the model of Li and Draine (Astrophys. J. 554:778, 2001) by solving self-consistently the energy balance for G 0 (1–104) times the radiation field following Weingartner and Draine (Astrophys. J. Suppl. Ser. 134:263, 2001). Consequently, infrared emission fluxes are also obtained. To keep it simple, this is presented in the empirical form of parameters T D and wavelength. The same model of the grain is adopted for photoelectric heating of gas using the formalism of Weingartner and Draine (Astrophys. J. Suppl. Ser. 134:263, 2001) (hereafter referred to as WD) and Bakes and Tielens (Astrophys. J. 427:822, 1994) (hereafter referred to as BT) for radiation field cited above in the range (6<hν≤13.6 eV). Temperature and abundances are determined using our own code for PDR very similar to cloudy code. All the possible sources of heating and cooling are considered for setting up the thermal balance. For the gas phase abundances that vary with depth in the cloud due to dust, self- and mutual shielding, chemical balance is solved. Most of the photoionization, photodissociation or chemical reaction rates are taken from UMIST database. We present an analysis of the cooling lines of singly ionized carbon [CII] at 158 μm and neutral oxygen [OI], at 63 μm and far infrared (FIR) continuum for a variety of star forming galaxies. Method of analysis of observational data is different from that of Malhotra et al. (Astrophys. J. 561:766, 2001). The radiation field G 0, density N h and abundance of carbon are obtained through best fit of observed and calculated intensities for lines and continuum radiations.  相似文献   

18.
Capture cross section of magnetized particle (with nonzero magnetic moment) by braneworld black hole in uniform magnetic field is studied. The magnetic moment of particle was chosen as it was done by de Felice and Sorge (Class. Quantum Gravity 20:469, 2003) and for the simplicity particle with zero electric charge is chosen. It is shown that the spin of particle as well as the brane parameter are to sustain the stability of particles circularly orbiting around the black hole in braneworld i.e. spin of particles and brane parameter try to prevent the capture by black hole.  相似文献   

19.
In a previous paper (Berman, in Astrophys. Space Sci., 2011), we showed how to prove the two Pioneers Anomalies, and now we add the fly-bys, by means of a rotating Universe. We discuss Einstein’s Machian program, which we find as being fullfilled. Godlowski et al. (Los Alamos Archives, 2003) idea for a rotating General Relativistic Universe, led us to the adopted model. Updated evidence on rotation is cited (Godlowski, in Los Alamos Archives, 2011; Ni in Phys. Rev. Lett. 107(5):051103, 2011). We conclude that a rotating and expanding Universe may be the unique solution to the apparent divergences between Einstein and Mach. This is cosmologically important.  相似文献   

20.
In the previous paper (Li et al. in Phys. Lett. B 666:125–130, 2008), we show the solutions of Einstein equations with static spherically-symmetric quintessence-like matter surrounding a global monopole. Furthermore, this monopole become a black hole with quintessence-like matter and a deficit solid angle when it is swallowed by an ordinary black hole. We study its quasinormal modes by WKB method in this paper. The numerical results show that both the real part of the quasinormal frequencies and the imaginary part decrease as the state parameter w, for scalar and gravitational perturbations. And we also show variations of quasinormal frequencies of scalar and gravitational fields via different ε (deficit solid angel parameter) and different ρ 0 (density of static spherically-symmetric quintessence-like matter at r=1), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号