首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this paper, we study the effects of polynomial f(R) model on the stability of homogeneous energy density in self-gravitating spherical stellar object. For this purpose, we construct couple of evolution equations which relate the Weyl tensor with matter parameters. We explore different factors responsible for density inhomogeneities with non-dissipative dust, isotropic as well as anisotropic fluids and dissipative dust cloud. We find that shear, pressure, dissipative parameters and f(R) terms affect the existence of inhomogeneous energy density.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Tachyonic scalar field-driven late universe with dust matter content is considered. The cosmic expansion is modeled with power-law and phantom power-law expansion at late time, i.e. z?0.45. WMAP7 and its combined data are used to constraint the model. The forms of potential and the field solution are different for quintessence and tachyonic cases. Power-law cosmology model (driven by either quintessence or tachyonic field) predicts unmatched equation of state parameter to the observational value, hence the power-law model is excluded for both quintessence and tachyonic field. In the opposite, the phantom power-law model predicts agreeing valued of equation of state parameter with the observational data for both quintessence and tachyonic cases, i.e. $w_{\phi, 0} = -1.49^{+11.64}_{-4.08}$ (WMAP7+BAO+H 0) and $w_{\phi, 0} = -1.51^{+3.89}_{-6.72} $ (WMAP7). The phantom-power law exponent β must be less than about ?6, so that the ?2<w ?,0<?1. The phantom power-law tachyonic potential is reconstructed. We found that dimensionless potential slope variable Γ at present is about 1.5. The tachyonic potential reduced to V=V 0 ? ?2 in the limit Ω m,0→0.  相似文献   

11.
12.
13.
14.
Chandra X-ray observations of rich, dynamically relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we discuss how Chandra observations may be used as a powerful tool for cosmological studies. By combining Chandra X-ray results on the X-ray gas mass fractions in clusters with independent measurements of the Hubble constant and the mean baryonic matter density of the universe, we obtain a tight constraint on the mean total matter density of the universe, Οm, and an interesting constraint on the cosmological constant, ΟΛ. Using these results, together with the observed local X-ray luminosity function of the most X-ray luminous galaxy clusters, a mass-luminosity relation determined from Chandra and ROSAT X-ray data and weak gravitational lensing observations, and the mass function predicted by numerical simulations, we obtain a precise constraint on the normalization of the power spectrum of density fluctuations in the nearby universe,σ8. We compare our results with those obtained from other, independent methods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Noether gauge symmetry for F(R) theory of gravity has been explored recently. The fallacy is that, even after setting gauge to vanish, the form of F(R)∝R n (where n≠1 is arbitrary) obtained in the process, has been claimed to be an outcome of gauge Noether symmetry. On the contrary, earlier works proved that any nonlinear form other than $F(R) \propto R^{\frac{3}{2}}$ is obscure. Here, we show that, setting gauge term zero, Noether equations are satisfied only for n=2, which again does not satisfy the field equations. Thus, as noticed earlier, the only form that Noether symmetry admits is $F(R) \propto R^{\frac{3}{2}}$ . Noether symmetry with non-zero gauge has also been studied explicitly here, to show that it does not produce anything new.  相似文献   

16.
We discuss the cosmological reconstruction in modified Gauss-Bonnet (GB) gravity. It is demonstrated that the modified GB gravity may describe the most interesting features of late-time cosmology. We derive explicit form of effective phantom cosmological models ending by the finite-time future singularity (Big Rip) and without singularities in the future (Little Rip).  相似文献   

17.
In this paper, Locally Rotationally Symmetric (LRS) Bianchi type-I models with holographic dark energy within the framework of f(G) theory of gravitation are thought about. So as to get determinate solutions, volumetric exponential expansion, power law expansion and hybrid expansion law are mentioned. The physical interpretations of the solution have been studied by using some physical quantizes. Additionally to make the interpretation more clear for that the statefinder diagnostic pair {r, s} and jerk parameter are analyzed to characterize completely different phases of the universe.  相似文献   

18.
19.
From our exact solution of the Janus Cosmological equation we derive the relation of the predicted magnitude of distant sources versus their red shift. The comparison, through this one free parameter model, to the available data from 740 distant supernovae shows an excellent fit.  相似文献   

20.
In this paper, we investigate the behavior of equation of state parameter and energy density for dark energy in the framework of f(T) gravity. For this purpose, we use anisotropic LRS Bianchi type I universe model. The behavior of accelerating universe is discussed for some well-known f(T) models. It is found that the universe takes a transition between phantom and non-phantom phases for f(T) models except exponential and logarithmic models. We conclude that our results are relativity analogous to the results of FRW universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号