首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The equation for the variation of the time of a periastron passage of binary stars has been solved by using the perturbation approach. The post-Newtonian effect on the variation of the time of a periastron passage has been examined within three gravitational theories. The results clearly show that the periastron passage of a binary star occurs earlier (advances) at each revolution. This effect has been calculated and discussed for ten binary stars.  相似文献   

2.
The influence of the gravitational radiation damping on the evolution of the orbital elements of compact binary stars is examined by using the method of perturbation. The perturbation equations with the true anomaly as an independent variable are given. This effect results in both the secular and periodic variation of the semi-major axis, the eccentricity, the mean longitude at the epoch and the mean longitude. However, the longitude of periastron exhibits no secular variation, but only periodic variation. The effect of secular variation of the orbit would lead to collapse of the system of binary stars. The deduced formulae are applied to the calculation of secular variation of the orbital elements for three compact binary stars: PSR19 13 + 16, PSR J0737-3039 and M33X-7. The results obtained are discussed.  相似文献   

3.
We propose an explanation for the puzzling appearance of a wide blue absorption wing in the He  i  λ10830 Å  P Cygni profile of the massive binary star η Car several months before periastron passage. Our basic assumption is that the colliding winds region is responsible for the blue wing absorption. By fitting observations, we find that the maximum outflow velocity of this absorbing material is  ∼2300 km s−1  . We also assume that the secondary star is towards the observer at periastron passage. With a toy model, we achieve two significant results. (1) We show that the semimajor axis orientation we use can account for the appearance and evolution of the wide blue wing under our basic assumption. (2) We predict that the Doppler shift (the edge of the absorption profile) will reach a maximum 0–3 weeks before periastron passage, and not necessarily exactly at periastron passage or after periastron passage.  相似文献   

4.
The gravitational-wave radiation from binary stars in elliptical orbits peaks at times close to the periastron passage. For a stationary distribution of binary neutron stars in the Galaxy, there are several systems with large orbital eccentricities and periods in the range from several tens of minutes to several days from which gravitational-wave radiation at periastron will be observed as a broad pulse in the frequency range 1–100 mHz. The LISA space interferometer will be able to record pulsed signals from these systems at a signal-to-noise ratio $S/N > 5\sqrt 5$ in the frequency range ~10?3–10?1 Hz. Algorithms for detecting such signals are discussed.  相似文献   

5.
We perform 3D hydrodynamical numerical simulations of the winds interaction process in the massive binary system η Carinae, and find the secondary star to accrete mass from the dense primary wind close to periastron passage. This accretion is thought to result in the spectroscopic event and X-ray minimum observed in the system every revolution. In this study we limit ourselves to explore the role of clumps in the primary wind in triggering the accretion process. We include the gravity of the secondary star and the orbital motion starting 19 days (90°) before periastron passage. The accretion process is triggered by dense clumps that cannot be decelerated by the ram pressure of the secondary wind. The dense clumps are formed by instabilities in the thin dense shell formed by the shocked primary wind gas. We explore the role of the numerical viscosity and some physical parameters on the initiation of the accretion process, and explain the unique properties of η Car that allow for the periastron accretion process to occur. The accretion starts about a week before periastron passage, as is required to explain the several weeks long X-ray minimum.  相似文献   

6.
给出了以偏近点角为自变量的变引力常数的摄动方程组的解.解包括轨道半长轴的长期和周期变化项,其他轨道根数在一阶解中无长期项,只有周期项.近星点经度和平经度在二阶解中显示长期项变化.给出了由于引力常数变化对双星轨道演变情况的数值估计,对结果做了讨论并给出结论.  相似文献   

7.
The research on quasar OJ 287 has lasted over 100 years. OJ 287 exhibits the phenomenon of periodic two-peak outbursts with the eruptive period of 12 years. Observations are rather well interpreted with the black hole binary model. In this model, the secondary black hole moves around the primary black hole and crashes against the accretion disk of the primary black hole, causing outbursts. This model reasonably explains the light curves of OJ 287 and correctly predicts the time of future outbursts. These indirectly justify the precessional effect of general relativity and the existence of gravitational waves. The massive black hole in the center of galaxy is an important kind of gravitational wave source. However, the number of the galaxies with precisely determined kinematical equations of inner components is quite small. The precise kinematic orbits of black holes are provided by the black hole binary model, so the radiation of gravitational waves can be studied on the basis of these kinematic orbits. Based on the existing work, the evolutionary relations of the radiation power and waveform of gravitational waves with time are first derived by using the post-Newtonian approximation method. According to the current progress of the detection equipment of gravitational waves, i.e., IPTA (International Pulsar Timing Array), the direct detection of gravitational waves from OJ 287 may be possible within the future decade.  相似文献   

8.
Three sets of spectra (in all 85 spectra) of the well-known standard and high eccentricity spectroscopic binary star Beta Ari were taken with the Boller and Chivens grating spectrography (29 and 35 Å mm?1) applied to the 137 cm reflector of the Merate Astronomical Observatory. These sets were takenduring the periastron passage of 14–15 November 1976,after the periastron passage of 2–3 October 1977 and before the apastron passage of 23 November 1977. The analysis of the radial velocitiesRV and equivalent widthsW λ of hydrogen and metal lines show periodic variations similar to those of some classical Delta Scuti stars. The variations of the asymmetries of the profiles of H and Caii K lines, linked to the variations of theRV seem to recall the Schuster effect observed in classical Cepheids. A periastron effect appears from: (a) increased amplitudes of theRV curves, (b) remarkable variations of the averagedW λ curves, (c) strong positive asymmetry (blue wing larger than red wing) in the Hγ and Caii K lines. A faint ‘bump’ inRV andW λ curves of Caii K line is singled out and could be in agreement with some theoretical forecasts of Aleshin (1964).  相似文献   

9.
In binary radio pulsars with a main-sequence star companion, the spin-induced quadrupole moment of the companion gives rise to a precession of the binary orbit. As a first approximation one can model the secular evolution caused by this classical spin-orbit coupling by linear-in-time changes of the longitude of periastron and the projected semi-major axis of the pulsar orbit. This simple representation of the precession of the orbit neglects two important aspects of the orbital dynamics of a binary pulsar with an oblate companion. First, the quasiperiodic effects along the orbit, owing to the anisotropic 1/ r 3 nature of the quadrupole potential. Secondly, the long-term secular evolution of the binary orbit, which leads to an evolution of the longitude of periastron and the projected semi-major axis, which is non-linear in time.   In this paper a simple timing formula for binary radio pulsars with a main-sequence star companion is presented which models the short-term secular and most of the short-term periodic effects caused by the classical spin-orbit coupling. I also give extensions of the timing formula that account for long-term secular changes in the binary pulsar motion. It is shown that the short-term periodic effects are important for the timing observations of the binary pulsar PSR B1259–63. The long-term secular effects are likely to become important in the next few years of timing observations of the binary pulsar PSR J0045–7319. They could help to restrict or even determine the moments of inertia of the companion star and thus probe its internal structure.   Finally, I reinvestigate the spin-orbit precession of the binary pulsar PSR J0045–7319 since the analysis given in the literature is based on an incorrect expression for the precession of the longitude of periastron. A lower limit of 20° for the inclination of the B star with respect to the orbital plane is derived.  相似文献   

10.
We present Rossi X-ray Timing Explorer ( RXTE ) observations of the Be/X-ray transient EXO 2030+375 during an outburst after a period of quiescence between 1993 August and 1996 April. When active, EXO 2030+375 is normally detected at each periastron passage of the neutron star. Our observations correspond to the third periastron passage after the source 'turned on' again. All outbursts after the quiescent period, including the one reported here, have been occurring at a much earlier binary phase than in the past. We discuss the possible mechanisms that may explain this shift in the onset of the outburst. Pulsations in the X-ray radiation are detected throughout the entire run. The neutron star spun up during the outburst at a rate of −1.16×10−8 s s−1, but no variations in the shape of the pulse profile as a function of intensity were seen. A correlation between the hardness ratio and the intensity is observed at low energies (6–12/2–6 keV). By comparing the magnetospheric and corotation radii we argue that the neutron star spins at a rate close to the equilibrium period. Finally, we perform pulse-phase spectroscopy and comment on changes seen as a function of spin phase.  相似文献   

11.
There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come from the same Lagrangian under different degrees of freedom. Damour & Schafer and Wex & Kopeikin applied Barker & O'Connell's orbital precession velocity in pulsar timing measurement. This paper applies Apostolatos et al.'s and Kidder's orbital precession velocity. We show that Damour & Schafer's treatment corresponds to negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and this paper both found significant (but not equivalent) effects. The observational data of two typical binary pulsars, PSR J2051-0827 and PSR J1713+0747, apparently support a significant Spin-Orbit coupling effect. Specific binary pulsars with orbital plane nearly edge on could discriminate between Wex & Kopeikin and this paper: if the orbital period derivative of the double-pulsar system PSRs J0737-3039 A and B, with orbital inclination angle i = 87.7129 deg, is much larger than that of the gravitational radiation induced one, then the expression in this paper is supported, otherwise Wex & Kopeikin's is supported.  相似文献   

12.
New outburst of the object BX Mon occurred in the beginning of 2019. The uniqueness of this event lies in its coincidence with the periastron passage by the hot component. This happened for the first time in the history of observations of this object. Previous epochs the moment of periastron passage corresponded to the lower part of the ascending branch of the light curve. Photometric and spectroscopic observations of BX Mon were carried out in the Fesenkov Astrophysical Institute (Republic of Kazakhstan). BVRc magnitudes, absolute fluxes and the profiles of emission lines were obtained. The maximal values B = 9.m7 and V = 9.m3, obtained in the beginning of 2019, are close to those observed during the previous outburst (2003, February). A high level of brightness was maintained until the middle of April. The absolute fluxes in the emission lines Hβ and Hα, obtained during the current outburst, turned out to be significantly weaker compared to the results, obtained in the previous periastron passages. A possible reason of the anomalous decrease of the emission line fluxes is the destruction of the accretion disk - the source of ionizing radiation.  相似文献   

13.
We study the usage of the X-ray light curve, column density towards the hard X-ray source, and emission measure (density square times volume), of the massive binary system η Carinae to determine the orientation of its semimajor axis. The source of the hard X-ray emission is the shocked secondary wind. We argue that, by itself, the observed X-ray flux cannot teach us much about the orientation of the semimajor axis. Minor adjustment of some unknown parameters of the binary system allows to fit the X-ray light curve with almost any inclination angle and orientation. The column density and X-ray emission measure, on the other hand, impose strong constrains on the orientation. We improve our previous calculations and show that the column density is more compatible with an orientation where for most of the time the secondary – the hotter, less massive star – is behind the primary star. The secondary comes closer to the observer only for a short time near periastron passage. The 10-week X-ray deep minimum, which results from a large decrease in the emission measure, implies that the regular secondary wind is substantially suppressed during that period. This suppression is most likely resulted by accretion of mass from the dense wind of the primary luminous blue variable star. The accretion from the equatorial plane might lead to the formation of a polar outflow. We suggest that the polar outflow contributes to the soft X-ray emission during the X-ray minimum; the other source is the shocked secondary wind in the tail. The conclusion that accretion occurs at each periastron passage, every five and a half years, implies that accretion had occurred at a much higher rate during the Great Eruption of η Car in the 19th century. This has far reaching implications for major eruptions of luminous blue variable stars.  相似文献   

14.
The inverse Compton (IC) scattering of ultrarelativistic electrons accelerated at the pulsar wind termination shock is generally believed to be responsible for TeV gamma-ray signal recently reported from the binary system PSR B1259-63/SS2883. In such a system the acceleration takes place in the presence of a dense radiation field provided by a companion Be2-type star. Thus it is natural to expect an orbital phase dependence of the acceleration efficiency in the system. The HESS collaboration reported the tendency of reduction of TeV γ-rays around the periastron. In this paper we study a possible explanation of this effect by the “early” (sub-TeV) cutoffs in the energy spectrum of accelerated electrons due to the enhanced rate of Compton losses close to the periastron.  相似文献   

15.
New optical spectroscopy of the high-mass X-ray binary microquasar LS I +61 303 is presented. Eccentric orbital fits to our radial velocity measurements yield updated orbital parameters in good agreement with previous work. Our orbital solution indicates that the periastron passage occurs at radio phase 0.23 and the X-ray/radio outbursts are triggered 2.5–4 d after the compact star passage. The spectrum of the optical star is consistent with a B0 V spectral type and contributes ∼65 per cent of the total light, the remainder being the result of emission by a circumstellar disc. We also measure the projected rotational velocity to be   v sin  i ≃ 113 km s−1  .  相似文献   

16.
The radial velocity of the binary star β CrB was reinvestigated to look for the hypothetical third body, suggested by NEUBAUERS results. Under the assumption that a systematic difference of 1.4 km/sec between NEUBAUERS results from 1931–43 and ours from 1971–83 is of instrumental origin, the radial velocities of both epochs can be well represented with the same orbital elements: thus the probability for the existence of a third component in the system is reduced. The eccentricity and the angle of periastron passage of the visual orbit, derived from published speckle interferometric measurements, agree very well with the corresponding elements of the spectroscopic orbit. For the masses of the components those of giant resp. subgiant stars of type A8 and F5 are found. The geometry of the binary β CrB with a magnetic star as the primary component is demonstrated.  相似文献   

17.
We present a new orbit for the visual binary ADS 8630 = γ Vir. Although it is one of the first visual double stars discovered, its orbital elements were still poorly known. Indeed the very high eccentricity of the orbit and the difficulty of observing the pair at periastron passage in 1836 has meant that it is only now that sufficient measures of the recent close approach in 2005 have allowed an orbital analysis which predicts the angular motion to an acceptable degree of accuracy. We present a series of 35 speckle measurements of ADS 8630 obtained with PISCO in Merate between 2004 and 2006. Those measures have been crucial for determining the new orbital elements since they cover an arc of 130 degrees in the apparent orbit and include the periastron passage of 2005. The masses of the individual F0V components of the binary are found to be 1.40 M with an accuracy of about 3%. We also investigate in detail the possibility of the presence of a third body in the system, that was proposed by other authors. The high‐angular resolution infra‐red image of γ Vir that we obtained in June 2006 with the LuckyCam instrument on the ESO NTT shows the absence of any companion as faint as a M0V star at a distance larger than 0.4″. Combined with the analysis of the residuals of our orbit, the values found for the masses of the individual components and the radial velocity measurements, this observation rules out the presence in the system of a third companion with a mass larger than 0.3 M. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Following the proposal by Damineli that the central object of Eta Carinae may be an early-type binary, we perform numerical simulations of the X-ray emission from colliding stellar winds. A synthetic light curve has been generated which qualitatively agrees with the recent X-ray variability, and provides further support for the binary model. In particular, the model predicts a rise in the observed X-ray emission towards periastron, followed by a sharp drop and subsequent recovery. This is indeed what is seen in the RXTE light curve, although some problems concerning the X-ray spectrum at periastron still need to be explained. The simulations suggest that the width of the periastron dip will provide strong constraints on the binary and stellar wind properties of the components of Eta Car.  相似文献   

19.
We discuss gravitational radiation from a neutral mass particle within a bound orbit in the background Schwarzschild metric. We compare the power loss of gravitational radiation according to this formalism with the heuristic quadrupole radiation formula as applied to a binary system. There are evidence and compelling reasons to believe that the quadrupole formula is valid even in a fairly strong gravitational field, although its fully consistent analytical derivation is not yet known. In particular, we emphasize that the application of the quadrupole formula to the binary pulsar system PSR 1913+16 as well as other binary pulsars, which are weakly bound by gravity, is well justified.  相似文献   

20.
Evolutionary calculations based on realistic equations of state indicate the stratified nature of the distribution of hadron matter in the interiors of neutron stars. In the proposed model, the stratified structure of a neutron star is treated as a rigid inert core surrounded by a dynamical layer. The physical basis for the model is the concept of the stellar matter of the peripheral envelope as an elastic Fermi continuum, the motions of which are described by the equations of nuclear elastodynamics, proposed in the macroscopic theory of collective processes in laboratory nuclear physics. It is shown that the vibrational dynamics of a neutron star is characterized by two branches of gravitational—elastic, spheroidal (s-mode) and torsional (t-mode) nonradial eigenvibrations. Estimates obtained for the periods of global, gravitational nonradial modes suggest that variations in the intensity of micropulses observed in the millisecond range of the spectra of C-pulsars may be ascribed to these vibrations. The proposed two-component model of a neutron star enables one to consider a glitch in a pulsar’s radio emission as a starquake due to the passage of the companion through periastron of the binary system. Translated from Astrofizika, Vol. 42, No. 2, pp. 235–252, April–June, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号