首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The local time dependent effects of geomagnetic storm on the ionospheric TEC and Rate of change of TEC Index (ROTI) are studied here using the GPS data for four different low latitude stations: Ogaswara, Japan (24.29?°N, 153.91?°E; Geomagnetic: 17.21?°N, 136.16?°W); Surat, India (21.16?°N, 72.78?°E; Geomagnetic: 12.88?°N, 146.91?°E); Bogota, Colombia (4.64?°N, ?74.09?°E; Geomagnetic: 14.42?°N, 1.67?°W); and Kokee park Waimea, Hawaii, US (22.12?°N, ?159.67?°E; Geomagnetic: 22.13?°N, 91.19?°W). The solar wind velocity and geomagnetic indices: Dst, Kp and IMF Bz are utilized to validate the geomagnetic storms registered during the years 2011 and 2012. Using the GPS based TEC data and computed values of ROTI, the storm induced ionospheric irregularities generation and inhibition has been studied for all stations. The present study suggests that, the F-region irregularities of a scale length of few kilometers over the magnetic equator are locally affected by geomagnetic storms. This study also shows a good agreement (70–84 %) with the Aaron’s criteria (Aarons, Radio Sci., 26:1131–1149, 1991; Biktash, Ann. Geophys., 19:731–739, 2004) as significant absence and enhancement of ROTI was found to be influenced by the local time of the negative peak of Dst index association.  相似文献   

2.
Coronal Mass Ejections (CMEs) are important phenomena in coronal dynamics causing interplanetary signatures (ICMEs). They eject large amounts of mass and magnetic fields into the heliosphere, causing major geomagnetic storms and interplanetary shocks. Geomagnetic storms are often characterized by abrupt increases in the northward component of the earth’s field, called sudden commencements (SSC) followed by large decreases of the magnetic field and slow recovery to normal values. The SSCs are well correlated with IP shocks. Here a case study of 10–15 February 2000 and also the statistical study of CME events observed by IPS array, Rajkot, during the years 2000 to 2003 and Radio Astronomy Center, Ooty are described. The geomagnetic storm index Dst, which is a measure of geo-effectiveness, is shown to be well correlated with normalized scintillation index ‘g’, derived from Ooty Radio Telescope (ORT) observations.  相似文献   

3.
To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index \((\mathrm{Dst}_{\mathrm{min}})\) and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (\({\geq}\,1.4\)) than those of the MC-storm events in the relationship between \(\mathrm{Dst}_{\mathrm{min}}\) and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (\(\mathrm{Dst}_{\mathrm{min}} \leq -100~\mbox{nT}\)) occur in the regions at negative \(P_{Y}\) (relative position of the Earth trajectory from the ICME axis in the \(Y\) component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive \(P_{Y}\) regions, while intense geoeffective solar wind conditions are not located in the positive \(P_{Y}\). These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth.  相似文献   

4.
The problem of solar wind-magnetosphere coupling is investigated for intense geomagnetic storms (Dst < -100nT) that occurred during solar cycle 23. For this purpose interplanetary plasma and field data during some intensely geo-effective transient solar/interplanetary disturbances have been analysed. A geomagnetic index that represents the intensity of planetary magnetic activity at subauroral latitude and the other that measures the ring current magnetic field, together with solar plasma and field parameters (V, B, Bz, σB, N, and T) and their various derivatives (BV,-BVz, BV2, -BzV2, B2V, Bz2V, NV2) have been analysed in an attempt to study mechanism and the cause of geo-effectiveness of interplanetary manifestations of transient solar events. Several functions of solar wind plasma and field parameters are tested for their ability to predict the magnitude of geomagnetic storm.  相似文献   

5.
This paper is a qualitative study of 42 events of solar filament/prominence sudden disappearances (“disparitions brusques”; henceforth DBs) around two solar minima, 1985 – 1986 and 1994. The studied events were classified as 17 thermal and 25 dynamic disappearances. Associated events, i.e. coronal mass ejections (CMEs), type II bursts, evolution of nearby coronal holes, as well as solar wind speed, and geomagnetic disturbances are discussed. We have found that about 50% of the thermal DBs with adjacent (within 15° from the DB) coronal holes were associated with CMEs within a selected time window. All the studied thermal disappearances with adjacent coronal holes or accompanied by dynamic disappearances were associated with weak and medium geomagnetic storms. Also, nearly 64% of dynamic DBs were associated with CMEs. Ten (40%) dynamic disappearances were associated with intense geomagnetic storms, even when no CMEs was reported, six (24%) dynamic disappearances corresponded to extreme storms, and five (20%) corresponded to medium geomagnetic storms. The extreme geomagnetic storms appeared to be related to combined events, involving dynamic disappearances with adjacent coronal holes or including thermal disappearances. Furthermore, the geomagnetic activity (Dst index) increased if the source was close to the central meridian (±30°). The highest interplanetary magnetic field (B), longest duration, lowest southward direction B z component, and lowest Dst were highly correlated for all studied events. The Sun – Earth transit time computed from the starting time of the sudden disappearance and the time its effect was measured at Earth was about 4.3 days and was mainly well correlated with the solar wind speed measured in situ (daily value).  相似文献   

6.
We have examined the relationships among coronal holes (CHs), corotating interaction regions (CIRs), and geomagnetic storms in the period 1996?–?2003. We have identified 123 CIRs with forward and reverse shock or wave features in ACE and Wind data and have linked them to coronal holes shown in National Solar Observatory/Kitt Peak (NSO/KP) daily He i 10?830 Å maps considering the Sun?–?Earth transit time of the solar wind with the observed wind speed. A sample of 107 CH?–?CIR pairs is thus identified. We have examined the magnetic polarity, location, and area of the CHs as well as their association with geomagnetic storms (Dst≤?50 nT). For all pairs, the magnetic polarity of the CHs is found to be consistent with the sunward (or earthward) direction of the interplanetary magnetic fields (IMFs), which confirms the linkage between the CHs and the CIRs in the sample. Our statistical analysis shows that (1) the mean longitude of the center of CHs is about 8°E, (2) 74% of the CHs are located between 30°S and 30°N (i.e., mostly in the equatorial regions), (3) 46% of the CIRs are associated with geomagnetic storms, (4) the area of geoeffective coronal holes is found to be larger than 0.12% of the solar hemisphere area, and (5) the maximum convective electric field E y in the solar wind is much more highly correlated with the Dst index than any other solar or interplanetary parameter. In addition, we found that there is also a semiannual variation of CIR-associated geomagnetic storms and discovered new tendencies as follows: For negative-polarity coronal holes, the percentage (59%; 16 out of 27 events) of CIRs associated with geomagnetic storms in the first half of the year is much larger than that (25%; 6 out of 24 events) in the second half of the year and the occurrence percentage (63%; 15 out of 24 events) of CIR-associated storms in the southern hemisphere is significantly larger than that (26%; 7 out of 27 events) in the northern hemisphere. Positive-polarity coronal holes exhibit an opposite tendency.  相似文献   

7.
In this work a total of 266 interplanetary coronal mass ejections observed by the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph (SOHO/LASCO) and then studied by in situ observations from Advanced Composition Explorer (ACE) spacecraft, are presented in a new catalog for the time interval 1996?–?2009 covering Solar Cycle 23. Specifically, we determine the characteristics of the CME which is responsible for the upcoming ICME and the associated solar flare, the initial/background solar wind plasma and magnetic field conditions before the arrival of the CME, the conditions in the sheath of the ICME, the main part of the ICME, the geomagnetic conditions of the ICME’s impact at Earth and finally we remark on the visual examination for each event. Interesting results revealed from this study include the high correlation coefficient values of the magnetic field \(B_{z}\) component against the Ap index (\(r = 0.84\)), as well as against the Dst index (\(r = 0.80\)) and of the effective acceleration against the CME linear speed (\(r = 0.98\)). We also identify a north–south asymmetry for X-class solar flares and an east–west asymmetry for CMEs associated with strong solar flares (magnitude ≥ M1.0) which finally triggered intense geomagnetic storms (with \(\mathrm{Ap} \geq179\)). The majority of the geomagnetic storms are determined to be due to the ICME main part and not to the extreme conditions which dominate inside the sheath. For the intense geomagnetic storms the maximum value of the Ap index is observed almost 4 hours before the minimum Dst index. The amount of information makes this new catalog the most comprehensive ICME catalog for Solar Cycle 23.  相似文献   

8.
The solar flares, the speeds of shocks propagated in the solar-terrestrial space and driven by coronal mass ejections (CMEs), the heliographic longitudes and Carrington longitudes of source regions, and the geomagnetic storms, which are accompanied by the super solar proton events with a peak ?ux equal to or exceeding 10 000 pfu, have been studied by using the data of ground-based and space observations. The results show that the heliographic longitudes of source regions of super solar proton events distributed in the range from E30? to W75°. The Carrington longitudes of source regions of super solar proton events distributed in the two longitudinal belts, 130°∼220° and 260°∼320°, respectively. All super solar proton events were accompanied by major solar flares and fast CMEs. The averaged speeds of shocks propagated from the sun to the Earth were greater than 1 200 km/s. Eight super solar proton events were followed by major geomagnetic storms (Dst≤−100 nT), except that one super solar proton event was followed by a geomagnetic storm with the geomagnetic activity index Dst=−96 nT, a little smaller than that of major geomagnetic storms.  相似文献   

9.
We studied the occurrence and characteristics of geomagnetic storms associated with disk-centre full-halo coronal mass ejections (DC-FH-CMEs). Such coronal mass ejections (CMEs) can be considered as the most plausible cause of geomagnetic storms. We selected front-side full-halo coronal mass ejections detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO) from the beginning of 1996 till the end of 2015 with source locations between solar longitudes E10 and W10 and latitudes N20 and S20. The number of selected CMEs was 66 of which 33 (50%) were deduced to be the cause of 30 geomagnetic storms with \(\mathrm{Dst} \leq- 50~\mbox{nT}\). Of the 30 geomagnetic storms, 26 were associated with single disk-centre full-halo CMEs, while four storms were associated, in addition to at least one disk-centre full-halo CME, also with other halo or wide CMEs from the same active region. Thirteen of the 66 CMEs (20%) were associated with 13 storms with \(-100~\mbox{nT} < \mbox{Dst} \leq- 50~\mbox{nT}\), and 20 (30%) were associated with 17 storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\). We investigated the distributions and average values of parameters describing the DC-FH-CMEs and their interplanetary counterparts encountering Earth. These parameters included the CME sky-plane speed and direction parameter, associated solar soft X-ray flux, interplanetary magnetic field strength, \(B_{t}\), southward component of the interplanetary magnetic field, \(B_{s}\), solar wind speed, \(V_{sw}\), and the \(y\)-component of the solar wind electric field, \(E_{y}\). We found only a weak correlation between the Dst of the geomagnetic storms associated with DC-FH-CMEs and the CME sky-plane speed and the CME direction parameter, while the correlation was strong between the Dst and all the solar wind parameters (\(B_{t}\), \(B_{s}\), \(V_{sw}\), \(E_{y}\)) measured at 1 AU. We investigated the dependences of the properties of DC-FH-CMEs and the associated geomagnetic storms on different phases of solar cycles and the differences between Solar Cycles 23 and 24. In the rise phase of Solar Cycle 23 (SC23), five out of eight DC-FH-CMEs were geoeffective (\(\mbox{Dst} \leq- 50~\mbox{nT}\)). In the corresponding phase of SC24, only four DC-FH-CMEs were observed, three of which were nongeoeffective (\(\mbox{Dst} > - 50~\mbox{nT}\)). The largest number of DC-FH-CMEs occurred at the maximum phases of the cycles (21 and 17, respectively). Most of the storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\) occurred at or close to the maximum phases of the cycles. When comparing the storms during epochs of corresponding lengths in Solar Cycles 23 and 24, we found that during the first 85 months of Cycle 23 the geoeffectiveness rate of the disk-centre full-halo CMEs was 58% with an average minimum value of the Dst index of \(- 146~\mbox{nT}\). During the corresponding epoch of Cycle 24, only 35% of the disk-centre full-halo CMEs were geoeffective with an average value of Dst of \(- 97~\mbox{nT}\).  相似文献   

10.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

11.
This paper presents the effect of geomagnetic storm on geomagnetic field components at Southern (Maitri) and Northern (Kiruna) Hemispheres. The Indian Antarctic Station Maitri is located at geom. long. 66.03° S; 53.21° E whereas Kiruna is located at geom. long. 67.52° N; 23.38° E. We have studied all the geomagnetic storms that occurred during winter season of the year 2004–2005. We observed that at Southern Hemisphere the variation is large as compared to the Northern Hemisphere. Geomagnetic field components vary when the interplanetary magnetic field is oriented in southward direction. Geomagnetic field components vary in the main phase of the ring current. Due to southward orientation of vertical component of IMF reconnection takes place all across the dayside that transports plasma and magnetic flux which create the geomagnetic field variation.  相似文献   

12.
During major geomagnetic storms, the interplanetary magnetic field angle φ (phi) changes often abruptly, either from 135° to 315° or 315° to 135°, suggesting that the heliospheric current sheet is pushed upward or downward by disturbed solar wind. The distortion of the heliospheric current sheet by three successive solar flares is simulated to show that such a flapping motion can occur.  相似文献   

13.
In the present study, we investigate the association of cosmic ray intensity (CRI) with various solar wind parameters (i.e. solar wind speed V, plasma proton temperature, plasma proton density), interplanetary magnetic field (IMF B), geomagnetic storms (GSs), averaged planetary A-index (Ap index) and sun spot number (SSN) for the period 2009–2016 (solar cycle 24) by using their daily mean average. To find the association of CRI with various solar wind parameters, GSs, IMF B, Ap index and SSN, we incorporate the analysis technique by superposed-epoch method. We have observed that CRI decreases with the increase in IMF B. Moreover the time-lag analysis has been performed by the method of correlation coefficient and observed a time lag of 0 to 2 day between the decrease in CRI and increase in IMF B. In addition, we show that the CRI is found to decrease in a similar pattern to disturbance storm time (Dst index) for most of the period of solar cycle 24. The high and positive correlation is found between CRI and Dst index. The CRI and Ap index are better anti-correlated to each other than CRI and IMF. CRI and SSN are positively correlated with each other. Solar wind parameters such as solar wind speed V is a CR-effective parameter while plasma proton temperature and plasma proton density are not CR-effective parameters. The indicated parameters such as Dst index, Ap index, IMF B and solar wind parameters such as solar wind speed V, plasma proton temperature, plasma proton density shows a kind of irregular variations for solar cycle 23 and 24 while CRI and SSN shows distinct behaviour for the two cycle.  相似文献   

14.
The aim of this paper is to investigate the association of the geomagnetic storms with the magnitude of interplanetary magnetic field IMF (B), solar wind speed (V), product of IMF and wind speed (\(V \cdot B)\), Ap index and solar wind plasma density (\(n_{\mathrm{p}})\) for solar cycles 23 and 24. A Chree analysis by the superposed epoch method has been done for the study. The results of the present analysis showed that \(V \cdot B\) is more geoeffective when compared to V or B alone. Further the high and equal anti-correlation coefficient is found between Dst and Ap index (? 0.7) for both the solar cycles. We have also discussed the relationship between solar wind plasma density (\(n_{\mathrm{p}})\) and Dst and found that both these parameters are weakly correlated with each other. We have found that the occurrence of geomagnetic storms happens on the same day when IMF, V, Ap and \(V \cdot B\) reach their maximum value while 1 day time lag is noticed in case of solar wind plasma density with few exceptions. The study of geomagnetic storms with various solar-interplanetary parameters is useful for the study of space weather phenomenon.  相似文献   

15.
Taking the 32 storm sudden commencements (SSCs) listed by the International Service of Geomagnetic Indices (ISGI) of the Observatory de l’Ebre during 2002 (solar activity maximum in Cycle 23) as a starting point, we performed a multi-criterion analysis based on observations (propagation time, velocity comparisons, sense of the magnetic field rotation, radio waves) to associate them with solar sources, identified their effects in the interplanetary medium, and looked at the response of the terrestrial ionized and neutral environment. We find that 28 SSCs can be related to 44 coronal mass ejections (CMEs), 15 with a unique CME and 13 with a series of multiple CMEs, among which 19 (68%) involved halo CMEs. Twelve of the 19 fastest CMEs with speeds greater than 1000 km?s?1 are halo CMEs. For the 44 CMEs, including 21 halo CMEs, the corresponding X-ray flare classes are: 3 X-class, 19 M-class, and 22 C-class flares. The probability for an SSC to occur is 75% if the CME is a halo CME. Among the 500, or even more, front-side, non-halo CMEs recorded in 2002, only 23 could be the source of an SSC, i.e. 5%. The complex interactions between two (or more) CMEs and the modification of their trajectories have been examined using joint white-light and multiple-wavelength radio observations. The detection of long-lasting type IV bursts observed at metric–hectometric wavelengths is a very useful criterion for the CME–SSC events association. The events associated with the most depressed Dst values are also associated with type IV radio bursts. The four SSCs associated with a single shock at L1 correspond to four radio events exhibiting characteristics different from type IV radio bursts. The solar-wind structures at L1 after the 32 SSCs are 12 magnetic clouds (MCs), 6 interplanetary coronal mass ejections (ICMEs) without an MC structure, 4 miscellaneous structures, which cannot unambiguously be classified as ICMEs, 5 corotating or stream interaction regions (CIRs/SIRs), one CIR caused two SSCs, and 4 shock events; note than one CIR caused two SSCs. The 11 MCs listed in 3 or more MC catalogs covering the year 2002 are associated with SSCs. For the three most intense geomagnetic storms (based on Dst minima) related to MCs, we note two sudden increases of the Dst, at the arrival of the sheath and the arrival of the MC itself. In terms of geoeffectiveness, the relation between the CME speed and the magnetic-storm intensity, as characterized using the Dst magnetic index, is very complex, but generally CMEs with velocities at the Sun larger than 1000 km?s?1 have larger probabilities to trigger moderate or intense storms. The most geoeffective events are MCs, since 92% of them trigger moderate or intense storms, followed by ICMEs (33%). At best, CIRs/SIRs only cause weak storms. We show that these geoeffective events (ICMEs or MCs) trigger an increased and combined auroral kilometric radiation (AKR) and non-thermal continuum (NTC) wave activity in the magnetosphere, an enhanced convection in the ionosphere, and a stronger response in the thermosphere. However, this trend does not appear clearly in the coupling functions, which exhibit relatively weak correlations between the solar-wind energy input and the amplitude of various geomagnetic indices, whereas the role of the southward component of the solar-wind magnetic field is confirmed. Some saturation appears for Dst values \(< -100\) nT on the integrated values of the polar and auroral indices.  相似文献   

16.
Applying ACE data and pressure-corrected Dst index (Dst*), annual distributions of solar wind structures detected at L1 point (the first Lagrangian point between solar-terrestrial interval) and correlations between solar wind structures and geomagnetic storms in 1998-2008 have been studied. It was found that, within the Earth's upstream solar wind, the dominant feature was interplanetary coronal mass ejections (ICMEs), primarily magnetic clouds, during solar maximum period but corotating interaction regions (CIRs) at solar minimum. During rising and declining phases, solar wind features became unstable for the complicated solar corona transition processes between the maximum and minimum phases, and there was a high CIR occurrence rate in 2003, the early period of the declining phase, for the Earth's upstream solar wind was dominated by high-speed southern coronal-hole outflows at that time. The occurrence rate of sector boundary crossing (SBC) events was evidently higher at the late half of declining phase and minimum period. ICMEs mainly centered on the maximum period but CIRs on all the declining phase. The occurrence rate of ICMEs was 1.3 times of that of CIRs, and more than half of ICMEs were magnetic clouds (MCs). Half of magnetic clouds could drive interplanetary shock and played a crucial role for geomagnetic storms generation, especially intense storms (Dst*≤100 nT), in which 45% were jointly induced by sheath region and driving MC structure. Sixty percent of intense storms were totally induced by shock-driving MCs; moreover, 74% of intense storms were driven by magnetic clouds, 81% of them driven by ICMEs. Shock-driving MC was the most geoeffective interplanetary source for four fifths of it able to lead to storms and more than one-third to intense storms. The rest of intense storms (19%) were induced just by 3% of all detected CIRs, and most of CIRs (53%) were corresponding to nearly 40% moderate and small storms (−100 nT<Dst*≤−30 nT). The true sector boundary crossing (SBC) events actually had no obvious geoeffectiveness, just 6% of them corresponding to small storms.  相似文献   

17.
R. T. Stewart 《Solar physics》1987,109(1):139-147
Synoptic plots of solar radio noise storms in the interval 1973 to 1984 are described. The dividing line between opposite noise storm polarities appears to be a good representation of the heliospheric current sheet out to displacements in latitude of ~ ± 50° from the solar equator. This result is surprising, because noise storms are closely associated with closed magnetic field regions near sunspots. The possibility that noise storm polarity is determined by mode coupling high in the corona, where field lines are open, can be ruled out by the available evidence. This leads us to conclude that it is the clustering in longitude of active region complexes which determines the sector structure of the interplanetary magnetic field.  相似文献   

18.
Although the current Solar Cycle 24 is characterized by low solar activity, an intense geomagnetic storm (G4) was recorded in June 2015. It was a complex phenomenon that began on 22 June 2015 as the result of intense solar activity, accompanied by several flares and coronal mass ejections that interacted with the Earth’s magnetic field. A Forbush decrease was also recorded at the neutron monitors of the worldwide network, with an amplitude of 8.4%, and in its recovery phase, a second Forbush decrease followed, with an amplitude of 4.0% for cosmic rays of 10 GV obtained with the global survey method. The Dst index reached a minimum value of ?204 nT that was detected on 23 June 2015 at 05:00?–?06:00 UT, while the Kp index reached the value eight. For our analysis, we used hourly cosmic-ray intensity data recorded by polar, mid-, and high-latitude neutron monitor stations obtained from the High Resolution Neutron Monitor Database. The cosmic-ray anisotropy variation at the ecliptic plane was also estimated and was found to be highly complex. We study and discuss the unusual and complex cosmic-ray and geomagnetic response to these solar events.  相似文献   

19.
Identifying the precursors (pre-increases or pre-decreases) of a geomagnetic storm or a Forbush decrease is of great importance since they can forecast and warn of oncoming space weather effects. A wide investigation using 93 events which occurred in the period from 1967 to 2006 with an anisotropy A xy >1.2% has been conducted. Twenty-seven of the events revealed clear signs of precursors and were classified into three categories. Here we present one of the aforementioned groups, including five Forbush decreases (24 June 1980, 28 October 2000, 17 August 2001, 23 April 2002, and 10 May 2002). Apart from hourly cosmic ray intensity data, provided by the worldwide network of neutron monitor stations, data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst), and interplanetary magnetic field were used for the analysis of the examined cosmic ray intensity decreases. The asymptotic longitudinal cosmic ray distribution diagrams were plotted using the “ring of stations” method. Results reveal a long pre-decrease up to 24 hours before the shock arrival in a narrow longitudinal zone from 90° to 180°.  相似文献   

20.
利用小波变换对GOES (Geostationary Operational Environmental Satellites)系列卫星(GOES 10/11) 1999年3月至2010年12月和风云2号系列卫星(FY 2C/2D) 2004年10月至2012年5月记录的2 MeV高能电子通量变化情况进行了相关研究,发现GOES卫星观测到的高能电子通量存在明显的13.9 d、 27.7 d、 187.0 d和342.9 d周期, FY卫星观测到的高能电子通量存在明显的13.9 d、27.7 d、222.3 d和374.0 d周期,在某些年份GOES和FY卫星均存在9 d的周期,与地磁Dst (赤道环电流指数)、 AE (极光电射流指数)指数周期高度相似.将高能电子通量和Dst、AE指数进行交叉小波分析,并利用该算法的多分辨率特点以及时域、频域局部化分析方法,将数据按不同频率进行分解,从低频系数重构图像和交叉小波谱图可以清楚看出高能电子通量和地磁指数的关系.基于FY和GOES卫星高能电子通量良好的相关性,对多卫星高能电子通量变化短周期相同、中长周期不同进一步研究,对比发现不同地磁扰动引起的GOES和FY卫星高能电子通量变化存在各向异性,小磁暴也可以对高能电子通量造成和强磁暴一样的效果,并且某些时候存在地方时一致的24 h周期.这一结果表明对地磁宁静期高能电子研究至关重要,同时对理解太阳活动,预报高能电子能谱和预警深层充电事件以及验证预测磁暴、亚暴等事件具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号