首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The propagation of dust ion acoustic waves is studied in plasmas composed of superthermal distributed electrons and stationary dust particles. The nonlinear Schrödinger equation is derived using the reductive perturbation technique and the modulational instability of dust ion acoustic waves is analyzed. Parametric investigations indicate that the presence of superthermal distributed electrons significantly modify the modulational instability and its growth rate. The effect of particle relative density on the wave characters is also investigated.  相似文献   

3.
Propagation of cylindrical and spherical ion acoustic solitary waves in plasmas consisting of cold ions, superthermal electrons and thermal positrons are investigated. It is shown that cylindrical/spherical Korteweg-de-Vries equation governs the dynamics of ion-acoustic solitons. The effects of nonplanar geometry and also superthermal electrons on the characteristics of solitary wave structures are studied using numerical simulations. Obtained results are compared with the results of the other published papers and errors in the results of some papers are pointed.  相似文献   

4.
The propagation of nonlinear waves in plasmas consisting of cold electron fluid and superthermal hot electrons and stationary ions is studied. The Korteweg-de Vries (KdV) equation is derived using the reductive perturbation theory. It is found that only the rarefractive solitons can be created. Moreover, the linear dispersion relation and energy of solitary waves in the presence of hot superthermal electrons are derived. Our investigation is of wide relevance to astronomers and space scientists working on interstellar space plasmas.  相似文献   

5.
Nonlinear propagation of dust-acoustic waves in an unmagnetized dusty plasma consisting of negatively charged mobile dust, nonextensive ions following nonextensive q-distribution and two distinct temperature superthermal electrons following superthermal kappa distribution each, is investigated by employing lower and higher order nonlinear equations, namely the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV) and the Gardner equations. The characteristic features of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two superthermal temperature electrons and ions nonextensivity on the basic characteristics of DA K-dV, mK-dV and Gardner solitons have also been investigated. It has been found that the DA Gardner solitons exhibit either negative or positive potential solitons only for q<q c where, q c is the critical value of the nonextensive parameter q. The possible applications of our results in understanding the localized nonlinear electrostatic structures existing in solar atmosphere, Saturn’s magnetosphere etc. (where the tails of the high energetic particles at different temperatures follow power-law like distribution) are also briefly discussed.  相似文献   

6.
Weak ion-acoustic solitary waves (IASWs) in unmagnetized plasmas having two-fluid ions and kappa-distributed electrons are considered. The effects of electron suprathermality, warm ion temperature and polarity on the nonlinear properties of these IASWs are analyzed. It is found that our present plasma model may support compressive as well as rarefactive solitary structures.  相似文献   

7.
The modified ion-acoustic envelope solitons and their modulational instability in a multi-component unmagnetized plasma (consisting of negatively charged immobile dusts, inertial ions and superthermal electrons of two distinct temperatures) are theoretically investigated. A multiple scale (in space and time) perturbation technique is used to derive the cubic nonlinear Schrödinger equation (which describes the evolution of a slowly varying wave envelope with space and time). It is observed that the plasma system under consideration supports two types (bright and dark) envelope solitons. It is also found that the dark (bright) envelope solitons are modulationally stable (unstable). The variation of the growth rate of the unstable bright envelope solitons with various plasma parameters (e.g. wave number, temperature of superthermal electrons, etc.) are found to be significant. The modulational instability criterions of the modified ion-acoustic envelope solitons are also seen to be influenced due to the variation of the intrinsic plasma parameters. The implications of the results of this theoretical investigations in some space plasma systems (viz. Saturn’s magnetosphere) are briefly mentioned.  相似文献   

8.
Properties of fully nonlinear electron-acoustic solitary waves in an unmagnetized and collisionless electron-positron-ion plasma containing cold dynamical electrons, superthermal electrons and positrons obeying Cairns’ distribution have been analyzed in the stationary background of massive positive ions. A linear dispersion relation has been derived, from which it is found that even in the absence of superthermal electrons, the superthermal positron component can provide the restoring force to the cold inertial electrons to excite electron-acoustic waves. Moreover, superthermal electron and positron populations seem to enhance the electron acoustic wave phase speed. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in the presence of positron both hump and dip type solitons appear to excite. The present work may be employed to explore and to understand the formation of electron acoustic soliton structures in the space and laboratory plasmas with nonthermal electrons and positrons.  相似文献   

9.
The properties of cylindrical and spherical ion acoustic solitary waves (IASWs) are investigated in a three-component unmagnetized, collisionless plasma consisting of warm ion fluid and superthermally distributed electrons and positrons in a nonplanar cylindrical or spherical geometry. Using the reductive perturbation technique, the nonplanar cylindrical and spherical Korteweg-de Vries (KdV) equations are derived. The effects of spectral index of electron and positron, and other plasma parameters are studied. It is found that both negative as well as positive solitary potential structures are formed in nonplanar geometries. The numerical solution shows that amplitude of the soliton is large in spherical geometry in comparison with cylindrical geometry. Numerical results indicate that the amplitude of the soliton is large in spherical geometry in comparison with cylindrical geometry.  相似文献   

10.
The properties of propagation of small amplitude ion acoustic solitary waves (IASWs) are studied in a plasma containing cold fluid ions and multi-temperature electrons (cool and hot electrons) with nonextensive distribution. Korteweg-de Vries (KdV) equation with finite amplitude is derived using a reductive perturbation method. From the solitary solutions of KdV equation, the combined effects of nonextensivity and density ratio are studied on characteristics of ion acoustic (IA) solitary waves. Positive as well as negative polarity solitons exist. Since singularity exists for A=0 so we have also derived modified Korteweg de Vries (mKdV) equation to study the solitonic solution for critical values of physical parameters (q,f,σ). The nonextensivity of electrons (via q) and density ratio of electrons and ions (via f) and temperature ratio (σ) significantly influence the characteristics of ion acoustic solitary structures.  相似文献   

11.
Interaction of nonplanar ion acoustic solitary waves is an important source of information to study the nature and characteristics of ion acoustic solitary waves (IASWs) structures. The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas comprising with inertial ions, superthermal electrons and positrons is investigated by using the extended version of Poincaré-Lighthill-Kuo (PLK) perturbation method. It has been shown numerically that how the interactions are taking place in cylindrical and spherical geometry. The nonplanar geometry modified analytical phase shifts following the head-on collision are derived. The effects of the superthermal electrons and positrons on the phase shift are studied. It is shown that the properties of the interaction IASWs in different geometry are very different.  相似文献   

12.
A rigorous theoretical investigation is carried out in analyzing the excitation of electrostatic ion acoustic (IA) solitary wave (SW) structures in two dimensional negative ion magneto-plasmas with superthermal electrons (following κ type distribution). The Zakharov-Kuznetsov (ZK) equation is derived by employing the well known reductive perturbation method, and the analytical solution of ZK equation assists to find out the SW profiles along with their properties. The consequences of different plasma parameters (regarding our considered plasma system) variation on SW structures has been studied. It is found that magnetic field intensity, superthermal parameter κ and temperature of positive and negative ions as well as their densities significantly modify the basic characteristics (amplitude, width, etc.) of the SW waves. A comparison of the SW structures is also presented when the electrons are Maxwellian to when they are superthermal. The relevance of the findings of this work with astrophysical plasmas is briefly pointed out.  相似文献   

13.
Ion-acoustic (IA) solitons in a collisionless plasma consisting of positive and negative ions and superthermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries (K-dV) and modified Korteweg-de Vries (mK-dV) equations. It is found that both compressive and rarefactive solitons can be propagated in this system. Also it is shown that at critical concentration of positive ions mK-dV solitons coexist. The effects of spectral index kappa, positive to negative ion density ratio and mass ratio of positive to negative ions on IA solitons structure are also discussed.  相似文献   

14.
Propagation of ion acoustic waves in plasmas containing electrons, positrons and high relativistic ions is investigated. It is shown that the Korteweg-de Vries (KdV) equation describes the nonlinear waves in this media. The amplitude and energy of the KdV solitary waves are derived and the effects of relativistic ions on these quantities are discussed.  相似文献   

15.
The current-driven electrostatic solitons and shocks are investigated in flowing plasmas having stationary dust and non-Maxwellian electrons. The propagation of solar wind parallel to the external magnetic field in the boundary regions of dusty magnetospheres of planets can give rise to drift type unstable electrostatic waves and nonlinear structures even if density is homogeneous. These waves can be produced in laboratory plasma experiments as well. Here the theoretical model is applied to Saturn’s magnetosphere.  相似文献   

16.
The nonlinear amplitude modulation of dust-ion acoustic wave (DIAW) is studied in the presence of nonextensive distributed electrons in dusty plasmas with stationary dust particles. Using the reductive perturbation method (RPM), the nonlinear Schrödinger equation (NLSE) which governs the modulational instability (MI) of the DIAWs is obtained. Modulational instability regions and the growth rate of nonlinear waves are discussed. It is shown that the wave characters are affected by the value of nonextensive parameter and also relative density of plasma constituents.  相似文献   

17.
The Zakharov-Kuznetsov (ZK) equation is derived for electrostatic wave in a rotating magnetoplasma with anisotropic ion pressure and in the presence of stationary charged dust particles. The anisotropic ion pressure is defined using double adiabatic Chew-Golberger-Low (CGL) theory. The reductive perturbation method is employed to study the dynamics of obliquely propagating low frequency ion acoustic wave with adiabatic ions. It is found that the ion pressure anisotropy, polarity, density of the dust particles and rotational frequency have significant effects on the formation nonlinear structures in rotating magnetized dusty plasmas. The numerical results are also presented for illustration.  相似文献   

18.
The propagation of cylindrical and spherical electron acoustic (EA) shock waves in unmagnetized plasmas consisting of cold fluid electrons, hot electrons obeying a superthermal distribution and stationary ions, has been investigated. The standard reductive perturbation method (RPM) has been employed to derive the cylindrical/spherical Korteweg-de-Vries-Burger (KdVB) equation which governs the dynamics of the EA shock structures. The effects of nonplanar geometry, plasma kinematic viscosity and electron suprathermality on the temporal evolution of the cylindrical and spherical EA shock waves are numerically examined.  相似文献   

19.
For the critical values of the parameters q and V, the work (Samanta et al. in Phys. Plasma 20:022111, 2013b) is unable to describe the nonlinear wave features in magnetized dusty plasma with superthermal electrons. To describe the nonlinear wave features for critical values of the parameters q and V, we extend the work (Samanta et al. in Phys. Plasma 20:022111, 2013b). To extend the work, we derive the modified Kadomtsev-Petviashvili (MKP) equation for dust ion acoustic waves in a magnetized dusty plasma with q-nonextensive velocity distributed electrons by considering higher order coefficients of ?. By applying the bifurcation theory of planar dynamical systems to this MKP equation, the existence of solitary wave solutions of both types rarefactive and compressive, periodic travelling wave solutions and kink and anti-kink wave solutions is proved. Three exact solutions of these above waves are determined. The present study could be helpful for understanding the nonlinear travelling waves propagating in mercury, solar wind, Saturn and in magnetosphere of the Earth.  相似文献   

20.
A rigorous theoretical investigation on the characteristics of dust-ion-acoustic (DIA) shock waves in an unmagnetized multi component electron-positron-ion dusty plasma (consisting of inertial ions, electrons of two distinct temperatures referred to as low and high temperature superthermal electrons where superthermality is introduced via the κ-type of nonthermal distribution, Boltzmann distributed positrons, and negatively charged immobile dust grains) has been made both theoretically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The influence of superthermal electrons, Maxwellian positrons and ion kinematic viscosity, which are found in this investigation, significantly modify the basic features of DIA shock waves, are briefly discussed. The present investigation can be very effective for studying and understanding the basic characteristics of shock wave propagation through different astrophysical situations where distinct temperature superthermal electrons dominate the wave dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号