首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We explore flat ΛCDM models with bulk viscosity, and study the role of the bulk viscosity in the evolution of these universe models. The dynamical equations for these models are obtained and solved for some cases of bulk viscosity. We obtain differential equations for the Hubble parameter H and the energy density of dark matter ρ m , for which we give analytical solutions for some cases and for the general case we give a numerical solution. Also we calculate the statefinder parameters for these models and display them in the sr-plane.  相似文献   

2.
Multiple ΛCDM cosmology is studied in a way that is formally a classical analog of the Casimir effect. Such cosmology corresponds to a time-dependent dark fluid model or, alternatively, to its scalar field presentation, and it motivated by the string landscape picture. The future evolution of the several dark energy models constructed within the scheme is carefully investigated. It turns out to be almost always possible to choose the parameters in the models so that they match the most recent and accurate astronomical values. To this end, several universes are presented which mimic (multiple) ΛCDM cosmology but exhibit Little Rip, asymptotically de Sitter, or Type I, II, III, and IV finite-time singularity behavior in the far future, with disintegration of all bound objects in the cases of Big Rip, Little Rip and Pseudo-Rip cosmologies.  相似文献   

3.
We used merger trees realizations, predicted by the extended Press-Schechter theory, in order to study the growth of angular momentum of dark matter haloes. Our results showed that:
  1. The spin parameter λ′ resulting from the above method, is an increasing function of the present day mass of the halo. The mean value of λ′ varies from 0.0343 to 0.0484 for haloes with present day masses in the range of 109h?1 M to 1014h?1 M .
  2. The distribution of λ′ is close to a log-normal, but, as it is already found in the results of N-body simulations, the match is not satisfactory at the tails of the distribution. A new analytical formula that approximates the results much more satisfactorily is presented.
  3. The distribution of the values of λ′ depends only weakly on the redshift.
  4. The spin parameter of an halo depends on the number of recent major mergers. Specifically the spin parameter is an increasing function of this number.
  相似文献   

4.
5.
We look for cosmologies with a scalar field (dark energy without cosmological constant), which mimic the standard ΛCDM cosmological model yielding exactly the same large-scale geometry described by the evolution of the Hubble parameter (i.e. photometric distance and angular diameter distance as functions on z). Asymptotic behavior of the field solutions is studied in the case of spatially flat Universe with pressureless matter and separable scalar field Lagrangians; the cases of power-law kinetic term and power-law potential are considered. Exact analytic solutions are found in some special cases. A number of models have the field solutions with infinite behavior in the past or even singular behavior at finite redshifts. We point out that introduction of the cosmological scalar field involves some degeneracy leading to lower precision in determination of Ω m . To remove this degeneracy additional information is needed besides the data on large-scale geometry. The article is published in the original.  相似文献   

6.
We investigate the evolution of a spherically symmetric dust-like cloud at the linear and nonlinear stages in the framework of ΛCDM models of the universe with nonzero three-space curvature. The evolution conditions are expressed for any redshift z ≥ 0 in terms of the amplitude δmin of the fluctuation which stops to expand at infinite time, the amplitude δ ta of the fluctuation which stops to expand at a given moment, and the amplitude δ c of the fluctuation which collapses at a given moment. These amplitudes are calculated as functions of cosmological model parameters and redshift. The ratios D nl r /D l of nonlinear amplitude estimates to linear ones and the typical fluctuation scales k nl /k are approximated by a function of the linear amplitude δ z .  相似文献   

7.
We propose a new consistency test for the ΛCDM cosmology using baryonic acoustic oscillations(BAO) and redshift space distortion(RSD) measurements from galaxy redshift surveys. Specifically, we determine the peak position of fσ8(z) in redshift z offered by an RSD measurement, and compare it to the one predicted by the BAO observables assuming a flat ΛCDM cosmology. We demonstrate this new test using the simulated data for the DESI galaxy survey, and argue that this test complements those using t...  相似文献   

8.
An anisotropic model with variableG and and bulk viscosity is considered. The model exhibits an inflationary behavior during which the coefficient of bulk viscosity varies lineraly with the energy density. This allows the anisotropy energy to decrease exponentially with time. Other results overlap with our earlier work with a different ansatz for . The gravitational constant was found to increase during the radiation and matter epochs.  相似文献   

9.
The constraints on the present baryon density from primordial nucleosynthesis in universes with interacting radiation and matter are investigated. For illustration, a class of exact cosmological models is studied in which two separate, interacting fluids act as the source of the gravitational field, a radiative perfect fluid modelling the cosmic microwave background and a second perfect fluid modelling the observed material content of the Universe. Althought the two fluid models under consideration are found to predict primordial element abundances similar to those predicted in the standard model (and consequently in general accord with observed values), the upper limit on the present baryon density inferred from the observed abundances of the light elements is found to be greater than that in the standard model due to the different evolution of the baryon density in the models. From this result, and using the fact that the upper limit on B (the ratio of the present value of the baryon density to the value of the critical density) is further weakened in inhomogeneous cosmological models, it is found that unlike the situation in the standard model, cosmologies with B 1 are permitted without violating the constraints of nucleosynthesis, thereby allowing the possibility that the Universe could be closed by baryonic matter alone.  相似文献   

10.
Anisotropic Bianchi-III cosmological model is investigated with variable gravitational and cosmological constants in the framework of Einstein’s general relativity. The shear scalar is considered to be proportional to the expansion scalar. The dynamics of the anisotropic universe with variable G and Λ are discussed. Without assuming any specific forms for Λ and the metric potentials, we have tried to extract the time variation of G and Λ from the anisotropic model. The extracted G and Λ are in conformity with the present day observations. Basing upon the observational limits, the behavior and range of the effective equation of state parameter are discussed.  相似文献   

11.
Homogeneous anisotropic turbulence simulations are used to determine off-diagonal components of the Reynolds stress tensor and its parameterization in terms of turbulent viscosity and Λ-effect. The turbulence is forced in an anisotropic fashion by enhancing the strength of the forcing in the vertical direction. The Coriolis force is included with a rotation axis inclined relative to the vertical direction. The system studied here is significantly simpler than that of turbulent stratified convection which has often been used to study Reynolds stresses. Certain puzzling features of the results for convection, such as sign changes or highly concentrated latitude distributions, are not present in the simpler system considered here. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We consider a tachyonic scalar field as a model of dark energy with interaction between components in the case of variable G and Λ. We assume a flat Universe with a specific form of scale factor and study cosmological parameters numerically and graphically. Statefinder analysis is also performed. For a particular choice of interaction parameters we succeed in obtaining an analytical expression of densities. We find that our model will be stable at the late stage but there is an instability in the early Universe, so we propose this model as a realistic model of our Universe.  相似文献   

13.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Bianchi type-I universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The model obtained approaches isotropy. The cosmological term tends asymptotically to a genuine cosmological constant, and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

14.
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach’s cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach’s cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρa −4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.  相似文献   

15.
The present study deals with spatially homogeneous and totally anisotropic locally rotationally symmetric (LRS) Bianchi type I cosmological model with variable G and Λ in presence of imperfect fluid. To get the deterministic model of Universe, we assume that the expansion (θ) in the model is proportional to shear (σ). This condition leads to A=ℓB n , where A, B are metric potential. The cosmological constant Λ is found to be decreasing function of time and it approaches a small positive value at late time which is supported by recent Supernovae Ia (SN Ia) observations. Also it is evident that the distance modulus curve of derived model matches with observations perfectly.  相似文献   

16.
17.
We have investigated the cosmological implications of the bulk viscous cosmological model with variable G and Λ. These results are found to be compatible with the present observations. The classical cosmological tests for this model encompass the Freese et al. ones. The model has some spirits of the Standard Model. The inflationary solution which solves the Standard problems is obtained as a special solution. The influence of viscosity is shown to affect the past and the future of the Universe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
As a result of an error by the authors,in the paper,one of the authors’names,“Xu-Juan Li”,was misspelled.The correct spelling of the name should be“Xiu-Juan Li”.  相似文献   

19.
Hypersurface–homogeneous cosmological models containing a bulk viscous fluid with time varying G and Λ have been presented. We have shown that the field equations are solvable for any arbitrary cosmic scale function. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of the energy density. Exact solutions of Einstein’s field equations are obtained which represent an expanding, shearing and accelerating/decelerating models of the universe. The physical and kinematical behaviours of the models are also discussed.  相似文献   

20.
On getting motivation from increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data, Einstein’s field equations with variable cosmological “constant” are considered in presence of perfect fluid for a homogeneous and anisotropic Bianchi type-I space-time. Einstein’s field equations are solved by considering a time dependent deceleration parameter which affords a late time acceleration in the universe. The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by consequences from recent supernovae Ia observations. From recently developed Statefinder pair, the behavior of different stages of the evolution of the universe has been studied. The physical significance of the cosmological models have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号