首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper responds to points made by Low (Solar Phys. 2010. doi:) with regard to the Parker problem as formulated in Craig and Sneyd (Solar Phys. 232, 41, 2005). We first point out that, since Low focuses mainly on interpreting approximate linearized solutions to the Parker problem, his approach cannot address key issues relating to the finite amplitude stability and dynamic accessibility of potential equilibria. Further difficulties are shown to surround Low’s assertion that non-linear equilibria derived by magneto-frictional relaxation of the Parker problem should be discounted. We conclude that both linear and non-linear approaches to the Parker problem appear remarkably consistent: they demonstrate the development of smooth 3D equilibria as opposed to the routine collapse to singular current sheets.  相似文献   

2.
In a recent paper, published in Astrophys. Space Sci. (337:107, 2012) (hereafter paper ZZX) and entitled “On the triangular libration points in photogravitational restricted three-body problem with variable mass”, the authors study the location and stability of the generalized Lagrange libration points L 4 and L 5. However their study is flawed in two aspects. First they fail to write correctly the equations of motion of the variable mass problem. Second they attribute a variable mass to the third body of the restricted three-body model, a fact that is not compatible with the assumptions used in deriving the mathematical formulation of this model.  相似文献   

3.
Maxwell’s ring-type configuration (i.e. an N-body model where the ν = Ν − 1 bodies have equal masses and are located at the vertices of a regular ν-gon while the N-th body with a different mass is located at the center of mass of the system) has attracted special attention during the last 15 years and many aspects of it have been studied by considering Newtonian and post-Newtonian potentials (Mioc and Stavinschi 1998, 1999), homographic solutions (Arribas et al. 2007) and relative equilibrium solutions (Elmabsout 1996), etc. An equally interesting problem, known as the ring problem of (N + 1) bodies, deals with the dynamics of a small body in the combined force field produced by such a configuration. This is the problem we are dealing with in the present paper and our aim is to investigate the variations in the dynamics of the small body in the case that the central primary is also a radiating source and therefore acts on the particle with both gravitation and radiation. Based on the general outlines of Radzievskii’s model, we study the permitted and the existing trapping regions of the particle, its equilibrium locations and their parametric variations as well as the existence of focal points in the zero-velocity diagrams. The distribution of the characteristic curves of families of planar symmetric periodic orbits and their stability for various values of the radiation coefficient of the central body is additionally investigated.  相似文献   

4.
In the framework of ‘microscopic’ theory of black holes (J. Phys. Soc. Jpn. Suppl. B 70, 84, 2001; Astrophys. USSR 4, 659, 1996; 35, 335, 1991, 33, 143, 1990, 31, 345, 1989a; Astrophys. Space Sci. 1, 1992; Dokl. Akad. Nauk USSR 309, 97, 1989b), and references therein, we address the ‘pre-radiation time’ (PRT) of neutrinos from black holes, which implies the lapse of time from black hole’s birth till radiation of an extremely high energy neutrinos. For post-PRT lifetime, the black hole no longer holds as a region of spacetime that cannot communicate with the external universe. We study main features of spherical accretion onto central BH and infer a mass accretion rate onto it, and, further, calculate the resulting PRT versus bolometric luminosity due to accretion onto black hole. We estimate the PRTs of AGN black holes, with the well-determined masses and bolometric luminosities, collected from the literature by Woo Jong-Hak and Urry (Astrophys. J. 579, 530, 2002) on which this paper is partially based. The simulations for the black holes of masses M BH ≃(1.1⋅106 ÷4.2⋅109) M give the values of PRTs varying in the range of about T BH ≃(4.3⋅105 ÷5.6⋅1011) yr. The derived PRTs for the 60 AGN black holes are longer than the age of the universe (∼13.7 Gyr) favored today. At present, some of remaining 174 BHs may radiate neutrinos. However, these results would be underestimated if the reservoir of gas for accretion in the galaxy center is quite modest, and no obvious way to feed the BHs with substantial accretion.  相似文献   

5.
Recently, Bijalwan (Astrophys. Space Sci. doi:, 2011) discussed all important solutions of charged fluid spheres with pressure and Gupta et al. (Astrophys. Space Sci. doi:, 2010) found first closed form solutions of charged Vaidya-Tikekar (V-T) type super-dense star. We extend here the approach evolved by Bijalwan (Astrophys. Space Sci. doi:, 2011) to find all possible closed form solutions of V-T type super-dense stars. The existing solutions of Vaidya-Tikekar type charged fluid spheres considering particular form of electric field intensity are being used to model massive stars. Infact at present maximum masses of the star models are found to be 8.223931M Θ and 8.460857M Θ subject to ultra-relativistic and non-relativistic conditions respectively. But these stars with such are large masses are not well behaved due to decreasing velocity of sound in the interior of star. We present new results concerning the existence of static, electrically charged perfect fluid spheres that have a regular interior. It is observed that electric intensity used in this article can be used to model superdense stars with ultrahigh surface density of the order 2×1014 gm/cm3 which may have maximum mass 7.26368240M Θ for ultra-relativistic condition and velocity of sound found to be decreasing towards pressure free interface. We solve the Einstein-Maxwell equations considering a general barotropic equation of state with pressure. For brevity we don’t present a detailed analysis of the derived solutions in this paper.  相似文献   

6.
We have performed normalization of Hamiltonian in the generalized photogravitational restricted three body problem with Poynting–Robertson drag. In this problem we have taken bigger primary as source of radiation and smaller primary as an oblate spheroid. Whittaker’s method is used to transform the second order part of the Hamiltonian into the normal form.   相似文献   

7.
It is surprising that we hardly know only 4% of the universe. Rest of the universe is made up of 73% of dark-energy and 23% of dark-matter. Dark-energy is responsible for acceleration of the expanding universe; whereas dark-matter is said to be necessary as extra-mass of bizarre-properties to explain the anomalous rotational-velocity of galaxy. Though the existence of dark-energy has gradually been accepted in scientific community, but the candidates for dark-matter have not been found as yet and are too crazy to be accepted. Thus, it is obvious to look for an alternative theory in place of dark-matter. Milgrom (Astrophys. J. 270:365, 1983a; 270:371, 1983b) has suggested a ‘Modified Newtonian Dynamics (MOND)’ which appears to be highly successful for explaining the anomalous rotational-velocity. But unfortunately MOND lacks theoretical support. The MOND, in-fact, is (empirical) modification of Newtonian-Dynamics through modification in the kinematical acceleration term ‘a’ (which is normally taken as a=\fracv2ra=\frac{v^{2}}{r}) as effective kinematic acceleration aeffective = a m(\fracaa0)a_{\mathit{effective}} = a \mu(\frac{a}{a_{0}}), wherein the μ-function is 1 for usual-values of accelerations but equals to \fracaa0 ( << 1)\frac{a}{a_{0}} (\ll1) if the acceleration ‘a’ is extremely-low lower than a critical value a 0(10−10 m/s2). In the present paper, a novel variant of MOND is proposed with theoretical backing; wherein with the consideration of universe’s acceleration a d due to dark-energy, a new type of μ-function on theoretical-basis emerges out leading to aeffective = a(1 -K \fraca0a)a_{\mathit{effective}} = a(1 -K \frac{a_{0}}{a}). The proposed theoretical-MOND model too is able to fairly explain ‘qualitatively’ the more-or-less ‘flat’ velocity-curve of galaxy-rotation, and is also able to predict a dip (minimum) on the curve.  相似文献   

8.
In this paper, we determine series of horizontally critical symmetric periodic orbits of the six basic families, f,g,h,i,l,m, of the photogravitational restricted three-body problem, and computetheir vertical stability. We restrict our study in the case where only the first primary is radiating, namely q 1≠1 andq 2=1. We also compare our results with those of Hénon and Guyot (1970) so as to study the effect of radiation to this kind of orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We consider the modified restricted three body problem with power-law density profile of disk, which rotates around the center of mass of the system with perturbed mean motion. Using analytical and numerical methods, we have found equilibrium points and examined their linear stability. We have also found the zero velocity surface for the present model. In addition to five equilibrium points there exists a new equilibrium point on the line joining the two primaries. It is found that L 1 and L 3 are stable for some values of inner and outer radius of the disk while other collinear points are unstable, but L 4 is conditionally stable for mass ratio less than that of Routh’s critical value. Lastly, we have studied the effects of radiation pressure, oblateness and mass of the disk on the motion and stability of equilibrium points.  相似文献   

10.
Recently, Bijalwan (Astrophys. Space Sci., doi:, 2011a) discussed charged fluid spheres with pressure while Bijalwan and Gupta (Astrophys. Space Sci. 317, 251–260, 2008) suggested using a monotonically decreasing function f to generate all possible physically viable charged analogues of Schwarzschild interior solutions analytically. They discussed some previously known and new solutions for Schwarzschild parameter u( = \fracGMc2a ) £ 0.142u( =\frac{GM}{c^{2}a} ) \le 0.142, a being radius of star. In this paper we investigate wide range of u by generating a class of solutions that are well behaved and suitable for modeling Neutron star charge matter. We have exploited the range u≤0.142 by considering pressure p=p(ω) and f = ( f0(1 - \fracR2(1 - w)a2) +fa\fracR2(1 - w)a2 )f = ( f_{0}(1 - \frac{R^{2}(1 - \omega )}{a^{2}}) +f_{a}\frac{R^{2}(1 - \omega )}{a^{2}} ), where w = 1 -\fracr2R2\omega = 1 -\frac{r^{2}}{R^{2}} to explore new class of solutions. Hence, class of charged analogues of Schwarzschild interior is found for barotropic equation of state relating the radial pressure to the energy density. The analytical models thus found are well behaved with surface red shift z s ≤0.181, central red shift z c ≤0.282, mass to radius ratio M/a≤0.149, total charge to total mass ratio e/M≤0.807 and satisfy Andreasson’s (Commun. Math. Phys. 288, 715–730, 2009) stability condition. Red-shift, velocity of sound and p/c 2 ρ are monotonically decreasing towards the surface while adiabatic index is monotonically increasing. The maximum mass found to be 1.512 M Θ with linear dimension 14.964 km. Class of charged analogues of Schwarzschild interior discussed in this paper doesn’t have neutral counter part. These solutions completely describe interior of a stable Neutron star charge matter since at centre the charge distribution is zero, e/M≤0.807 and a typical neutral Neutron star has mass between 1.35 and about 2.1 solar mass, with a corresponding radius of about 12 km (Kiziltan et al., [astro-ph.GA], 2010).  相似文献   

11.
We have obtained Bianchi type-III cosmological model with strange quark matter attached to the string cloud in general relativity. For solving the Einstein’s field equations the relation [C=A n ] between metric coefficients C and A is used. Also, some physical and kinematic properties of the model are discussed.The results are analogous to results obtained by Yilmaz (Gen. Rel. Grav. 38:1397–1406, 2006).  相似文献   

12.
In a previous work we studied the effects of (I) the J 2 and C 22 terms of the lunar potential and (II) the rotation of the primary on the critical inclination orbits of artificial satellites. Here, we show that, when 3rd-degree gravity harmonics are taken into account, the long-term orbital behavior and stability are strongly affected, especially for a non-rotating central body, where chaotic or collision orbits dominate the phase space. In the rotating case these phenomena are strongly weakened and the motion is mostly regular. When the averaged effect of the Earth’s perturbation is added, chaotic regions appear again for some inclination ranges. These are more important for higher values of semi-major axes. We compute the main families of periodic orbits, which are shown to emanate from the ‘frozen eccentricity’ and ‘critical inclination’ solutions of the axisymmetric problem (‘J 2 + J 3’). Although the geometrical properties of the orbits are not preserved, we find that the variations in e, I and g can be quite small, so that they can be of practical importance to mission planning.  相似文献   

13.
The integration of the equations of motion in gravitational dynamical systems—either in our Solar System or for extra-solar planetary systems—being non integrable in the global case, is usually performed by means of numerical integration. Among the different numerical techniques available for solving ordinary differential equations, the numerical integration using Lie series has shown some advantages. In its original form (Hanslmeier and Dvorak, Astron Astrophys 132, 203 1984), it was limited to the N-body problem where only gravitational interactions are taken into account. We present in this paper a generalisation of the method by deriving an expression of the Lie terms when other major forces are considered. As a matter of fact, previous studies have been done but only for objects moving under gravitational attraction. If other perturbations are added, the Lie integrator has to be re-built. In the present work we consider two cases involving position and position-velocity dependent perturbations: relativistic acceleration in the framework of General Relativity and a simplified force for the Yarkovsky effect. A general iteration procedure is applied to derive the Lie series to any order and precision. We then give an application to the integration of the equation of motions for typical Near-Earth objects and planet Mercury.  相似文献   

14.
This paper investigates the triangular libration points in the photogravitational restricted three-body problem of variable mass, in which both the attracting bodies are radiating as well and the infinitesimal body vary its mass with time according to Jeans’ law. Firstly, applying the space-time transformation of Meshcherskii in the special case when q=1/2, k=0, n=1, the differential equations of motion of the problem are given. Secondly, in analogy to corresponding problem with constant mass, the positions of analogous triangular libration points are obtained, and the fact that these triangular libration points cease to be classical ones when α≠0, but turn to classical L 4 and L 5 naturally when α=0 is pointed out. Lastly, introducing the space-time inverse transformation of Meshcherskii, the linear stability of triangular libration points is tested when α>0. It is seen that the motion around the triangular libration points become unstable in general when the problem with constant mass evolves into the problem with decreasing mass.  相似文献   

15.
This paper is a contribution to the Theory of the Artificial Satellite, within the frame of the Lie Transform as canonical perturbation technique (elimination of the short period terms). We consider the perturbation by any zonal harmonic J n (n ≥ 2) of the primary on the satellite, what we call here the complete zonal problem of the artificial satellite. This is quite useful for primaries with symmetry of revolution. We give an analytical formula to compute directly the first order averaged Hamiltonian. The computation is carried out in closed form for all terms, avoiding therefore tedious expansions in the eccentricity or in any anomaly; this feature makes the averaging process, not only valid for all kind of elliptic trajectories but at the same time it yields the averaged Hamiltonian in a very short and compact way. The formula allows us to now skip the averaging process, which means an asymptotic gain of a factor 3n/2 regarding the computational cost of the n th zonal. Our analytical formulae have been widely checked, by comparison on one hand with published works (Brouwer, 1959) (which contained results for particular zonal harmonics, let’s say typically from J 2 to J 8), and on the other hand with the results of 3 symbolic manipulation software, among which the MM (standing for ‘Moon’s series Manipulator’), which has already been used and described in (De Saedeleer B., 2004). Additionally, the first order generator associated with this transformation is given into the same closed form, and has also been validated.  相似文献   

16.
It is well known that the parallel cuts of the parallel and perpendicular electric field in electron phase-space holes (electron holes) have bipolar and unipolar structures, respectively. Recently, electron holes in the Earth’s plasma sheet have been observed by THEMIS satellites to have detectable fluctuating magnetic field with regular structures. Du et al. (2011) investigated the evolution of a one-dimensional (1D) electron hole with two-dimensional (2D) electromagnetic particle-in-cell (PIC) simulations in weakly magnetized plasma (Ω e <ω pe , where Ω e and ω pe are the electron gyrofrequency and electron plasma frequency, respectively), which initially exists in the simulation domain. The electron hole is unstable to the transverse instability and broken into several 2D electron holes. They successfully explained the observations by THEMIS satellites based on the generated magnetic structures associated with these 2D electron holes. In this paper, 2D electromagnetic particle-in-cell (PIC) simulations are performed in the xy plane to investigate the nonlinear evolution of the electron two-stream instability in weakly magnetized plasma, where the background magnetic field (B0 = B0[(e)\vec] x)(\mathbf{B}_{0} =B_{0}\vec{\mathbf{e}} _{x}) is along the x direction. Several 2D electron holes are formed during the nonlinear evolution, where the parallel cuts of E x and E y have bipolar and unipolar structures, respectively. Consistent with the results of Du et al. (2011), we found that the current along the z direction is generated by the electric field drift motion of the trapped electrons in the electron holes due to the existence of E y , which produces the fluctuating magnetic field δB x and δB y in the electron holes. The parallel cuts of δB x and δB y in the electron holes have unipolar and bipolar structures, respectively.  相似文献   

17.
A new class of dark energy models in a Locally Rotationally Symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the present paper. The Einstein’s field equations have been solved by applying a variation law for generalized Hubble’s parameter given by Berman: Nuovo Cimento 74:182 (1983) which generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The dark energy EoS parameter ω is found to be time dependent and its existing range for both models is in good agreement with the three recent observations of (i) SNe Ia data (Knop et al.: Astrophys. J. 598:102 (2003)), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al.: Astrophys. J. 606:702 (2004)) and latest (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al.: Astrophys. J. Suppl. 180:225 (2009); Komatsu et al. Astrophys. J. Suppl. 180:330 (2009)). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric behaviour of the universe have also been discussed in detail.  相似文献   

18.
We revisit a set of symplectic variables introduced by Andre Deprit (Celest Mech 30, 181–195, 1983), which allows for a complete symplectic reduction in rotation invariant Hamiltonian systems, generalizing to arbitrary dimension Jacobi’s reduction of the nodes. In particular, we introduce an action-angle version of Deprit’s variables, connected to the Delaunay variables, and give a new hierarchical proof of the symplectic character of Deprit’s variables.  相似文献   

19.
The regularization of a new problem, namely the three-body problem, using ‘similar’ coordinate system is proposed. For this purpose we use the relation of ‘similarity’, which has been introduced as an equivalence relation in a previous paper (see Roman in Astrophys. Space Sci. doi:, 2011). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The ‘similar’ polar angle’s definition is introduced, in order to analyze the regularization’s geometrical transformation. The effect of Levi-Civita’s transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.  相似文献   

20.
We present a new method to solve the problem of initial orbit determination of any binary system. This method is mainly based on the material available for an observer, for example relative positions at a given time of the couple in the “plane of sky”, namely the tangent plane to the celestial sphere at the position of the primary component. The problem of orbit determination is solved by splitting in successive stages in order to decorrelate the parameters of each other as much as possible. On one hand, the geometric problem is solved using the first Kepler’s law from a single observing run and, on the other hand, dynamical parameters are then inferred from the fit of the Kepler’s equation. At last, the final stage consists in determining the main physical parameters involved in the secular evolution of the system, that is the spin axis and the J2 parameter of the primary if we assume that it is a quasi-spherical body. As a matter of fact there is no need to make too restrictive initial assumptions (such as circular orbit or zero eccentricity) and initial guesses of parameters required by a non-linear least-squares Levenberg–Marquardt algorithm are finally obtained after each stage. Such a protocol is very useful to study systems like binary asteroids for which all of the parameters should be considered a priori as unknowns. As an example of application, we used our method to estimate the set of the Pluto–Charon system parameters from observations collected in the literature since 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号