首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We show in this article that charged fluid with pressure derived by Bijalwan (Astrophys. Space. Sci. doi:, 2011a) can be used to model classical electron, quark, neutron stars and pulsar with charge matter, quasi black hole, white dwarf, super-dense star etc. Recent analysis by Bijalwan (Astrophys. Space. Sci., 2011d) that all charged fluid solutions in terms of pressure mimic the classical electron model are partially correct because solutions by Bijalwan (Astrophys. Space. Sci. doi:, 2011a) may possess a neutral counterpart. In this paper we characterized solutions in terms of pressure for charged fluids that have and do not have a well behaved neutral counter part considering same spatial component of metric e λ for neutral and charged fluids. We discussed solution by Gupta and Maurya (Astrophys. Space Sci. 331(1):135–144, 2010a) and solutions by Bijalwan (Astrophys. Space Sci. doi:, 2011b; Astrophys. Space Sci. doi:, 2011c; Astrophys. Space Sci., 2011d) such that charged fluids possess and do not possess a neutral counterpart as special cases, respectively. For brevity, we only present some analytical results in this paper.  相似文献   

2.
Rahaman et al. (Astrophys. Space. Sci. 331:191–197, 2010) discussed some classical electron models (CEM) in general relativity. Bijalwan (Astrophys. Space. Sci. 334:139–143, 2011) present a general exact solution of the Einstein-Maxwell equations in terms of pressure. We showed that charged fluid solutions in terms of pressure are not reducible to a well behaved neutral counter part for a spatial component of metrice λ . Hence, these solutions represent an electron model in general relativity. We illustrated solutions in terms of pressure briefly with de-Sitter equation of state and charged analogues of Kohler Chao interior solution as a special cases.  相似文献   

3.
Recently, Bijalwan (Astrophys. Space Sci., doi:, 2011a) discussed charged fluid spheres with pressure while Bijalwan and Gupta (Astrophys. Space Sci. 317, 251–260, 2008) suggested using a monotonically decreasing function f to generate all possible physically viable charged analogues of Schwarzschild interior solutions analytically. They discussed some previously known and new solutions for Schwarzschild parameter u( = \fracGMc2a ) £ 0.142u( =\frac{GM}{c^{2}a} ) \le 0.142, a being radius of star. In this paper we investigate wide range of u by generating a class of solutions that are well behaved and suitable for modeling Neutron star charge matter. We have exploited the range u≤0.142 by considering pressure p=p(ω) and f = ( f0(1 - \fracR2(1 - w)a2) +fa\fracR2(1 - w)a2 )f = ( f_{0}(1 - \frac{R^{2}(1 - \omega )}{a^{2}}) +f_{a}\frac{R^{2}(1 - \omega )}{a^{2}} ), where w = 1 -\fracr2R2\omega = 1 -\frac{r^{2}}{R^{2}} to explore new class of solutions. Hence, class of charged analogues of Schwarzschild interior is found for barotropic equation of state relating the radial pressure to the energy density. The analytical models thus found are well behaved with surface red shift z s ≤0.181, central red shift z c ≤0.282, mass to radius ratio M/a≤0.149, total charge to total mass ratio e/M≤0.807 and satisfy Andreasson’s (Commun. Math. Phys. 288, 715–730, 2009) stability condition. Red-shift, velocity of sound and p/c 2 ρ are monotonically decreasing towards the surface while adiabatic index is monotonically increasing. The maximum mass found to be 1.512 M Θ with linear dimension 14.964 km. Class of charged analogues of Schwarzschild interior discussed in this paper doesn’t have neutral counter part. These solutions completely describe interior of a stable Neutron star charge matter since at centre the charge distribution is zero, e/M≤0.807 and a typical neutral Neutron star has mass between 1.35 and about 2.1 solar mass, with a corresponding radius of about 12 km (Kiziltan et al., [astro-ph.GA], 2010).  相似文献   

4.
We obtain a new parametric class of exact solutions of Einstein–Maxwell field equations which are well behaved. We present a charged super-dense star model after prescribing particular forms of the metric potential and electric intensity. The metric describing the super dense stars joins smoothly with the Reissner–Nordstrom metric at the pressure free boundary. The electric density assumed is where n may take the values 0,1,2,3,4 and so on and K is a positive constant. For n=0,1 we rediscover the solutions by Gupta and Maurya (Astrophys. Space Sci. 334(1):155, 2011) and Fuloria et al. (J. Math. 2:1156, 2011) respectively. The solution for n=2 have been discussed extensively keeping in view of well behaved nature of the charged solution of Einstein–Maxwell field equations. The solution for n=3 and n=4 can be also studied likewise. In absence of the charge we are left behind with the regular and well behaved fifth model of Durgapal (J. Phys. A 15:2637, 1982). The outmarch of pressure, density, pressure-density ratio and the velocity of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. For this class of solutions the mass of a star is maximized with all degree of suitability, compatible with Neutron stars and Pulsars.  相似文献   

5.
In the present article models of well behaved charged superdense stars with surface density 2×1014 gm/cm3 are constructed by considering a static spherically symmetric metric with t = const hypersurfaces as spheroids and hyperboloids. Maximum mass of the star is found to be 7.66300M Θ with radius 19.35409 km for spheroids case while 1.51360M Θ with radius 13.72109 km for hyperboloid case satisfying ultra-relativistic conditions. The solutions thus found satisfy all the reality and causality conditions. For brevity we don’t present a detailed analysis of the derived solutions in this paper.  相似文献   

6.
We present a variety of well behaved classes of Charge Analogues of Tolman’s iv (1939). These solutions describe charged fluid balls with positively finite central pressure, positively finite central density; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. These solutions give us wide range of parameter for every positive value of n for which the solution is well behaved hence, suitable for modeling of super dense stars. keeping in view of well behaved nature of these solutions, one new class of solutions is being studied extensively. Moreover, this class of solutions gives us wide range of constant K (0.3≤K≤0.91) for which the solution is well behaved hence, suitable for modeling of super dense stars like Strange Quark stars, Neutron stars and Pulsars. For this class of solutions the mass of a star is maximized with all degree of suitability, compatible with Quark stars, Neutron stars and Pulsars. By assuming the surface density ρ b =2×1014 g/cm3 (like, Brecher and Caporaso in Nature 259:377, 1976), corresponding to K=0.30 with X=0.39, the resulting well behaved model has the mass M=2.12M Θ, radius r b ≈15.27 km and moment of inertia I=4.482×1045 g cm2; for K=0.4 with X=0.31, the resulting well behaved model has the mass M=1.80M Θ, radius r b ≈14.65 km and moment of inertia I=3.454×1045 g cm2; and corresponding to K=0.91 with X=0.135, the resulting well behaved model has the mass M=0.83M Θ, radius r b ≈11.84 km and moment of inertia I=0.991×1045 g cm2. For n=0 we rediscovered Pant et al. (in Astrophys. Space Sci. 333:161, 2011b) well behaved solution. These values of masses and moment of inertia are found to be consistent with other models of Neutron stars and Pulsars available in the literature and are applicable for the Crab and the Vela Pulsars.  相似文献   

7.
The paper presents a class of interior solutions of Einstein–Maxwell field equations of general relativity for a static, spherically symmetric distribution of the charged fluid. This class of solutions describes well behaved charged fluid balls. The class of solutions gives us wide range of parameter K (0≤K≤42) for which the solution is well behaved hence, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=2 and X=0.30, the maximum mass of the star comes out to be 4.96 M Θ with linear dimension 34.16 km and central redshift and surface redshift 2.1033 and 0.683 respectively. In absence of the charge we are left behind with the well behaved fourth model of Durgapal (J. Phys., A, Math. Gen. 15:2637, 1982).  相似文献   

8.
We obtain a new class of charged super-dense star models after prescribing particular forms of the metric potential g 44 and electric intensity. The metric describing the superdense stars joins smoothly with the Reissner-Nordstrom metric at the pressure free boundary. The interior of the stars possess there energy density, pressure, pressure-density ratio and velocity of sound to be monotonically decreasing towards the pressure free interface. In view of the surface density 2×1014 g/cm3, the heaviest star occupies a mass 5.6996 M with its radius 17.0960 km. The red shift at the centre and boundary are found to be 3.5120 and 1.1268 respectively. In absence of the charge we are left behind with the regular and well behaved fifth model of Durgapal (J. Phys. A 15:2637, 1982).  相似文献   

9.
In this paper we present a detailed study of BCT Ist solution Tewari (Astrophys. Space Sci. 149:233, 1988) representing time dependent balls of perfect fluid with matter-radiation in general relativity. Assuming the life time of quasar 107 years our model has initial mass≈108 M Θ with an initial linear dimension≈1015 cm. Our model is radiating the energy at a constant rate i.e. L =1047 ergs/sec with the gravitational red shift, z=0.44637. In this model we have 2GM(u)/c 2 R S (u))=0.3191 i.e. the model is horizon free.  相似文献   

10.
A new class of charged super-dense star models is obtained by using an electric intensity, which involves a parameter, K. The metric describing the model shares its metric potential g 44 with that of Durgapal’s fourth solution (J. Phys. A, Math. Gen. 15:2637, 1982). The pressure-free surface is kept at the density ρ b =2×1014 g/cm3 and joins smoothly with the Reissner-Nordstrom solution. The charge analogues are well-behaved for a wide range, 0≤K≤59, with the optimum value of X=0.264 i.e. the pressure, density, pressure–density ratio and velocity of sound are monotonically decreasing and the electric intensity is monotonically increasing in nature for the given range of the parameter K. The maximum mass and the corresponding radius occupied by the neutral solution are 4.22M Θ and 20 km, respectively for X=0.264. For the charged solution, the maximum mass and radius are defined by the expressions M≈(0.0059K+4.22)M Θ and r b ≈−0.021464K+20 km respectively.  相似文献   

11.
A class of well behaved charged superdense star models of embedding class one is obtained by taking perfect fluid to be interior matter. In the process we come across the models for white dwarf, quark and neutron stars. Maximum mass of the star of this class is found to be 6.716998M Θ with its radius is 18.92112 Km. In the absence of charge the models reduce to Schwarzchild’s interior model with constant density.  相似文献   

12.
In the present article, a family of static spherical symmetric well behaved interior solutions is derived by considering the metric potential g 44=B(1−Cr 2)n for the various values of n, such that (1+n)/(1−n) is positive integer. The solutions so obtained are utilised to construct the heavenly bodies’ like quasi-black holes such as white dwarfs, neutron stars, quarks etc., by taking the surface density 2×1014 gm/cm3. The red shifts at the centre and on the surface are also computed for the different star models. Moreover the adiabatic index is calculated in each case. In this process the authors come across the quarks star only. Least and maximum mass are fond to be 3.4348M Θ and 4.410454M Θ along with the radii 21.0932 km and 23.7245 km respectively.  相似文献   

13.
The paper presents a variety of classes of interior solutions of Einstein–Maxwell field equations of general relativity for a static, spherically symmetric distribution of the charged fluid with well behaved nature. These classes of solutions describe perfect fluid balls with positively finite central pressure, positively finite central density; their ratio is less than one and causality condition is obeyed at the center. The outmarch of pressure, density, pressure–density ratio and the adiabatic speed of sound is monotonically decreasing for these solutions. Keeping in view of well behaved nature of these solutions, two new classes of solutions are being studied extensively. Moreover, these classes of solutions give us wide range of constant K for which the solutions are well behaved hence, suitable for modeling of super dense star. For solution (I1) the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3 corresponding to K=1.19 and X=0.20, the maximum mass of the star comes out to be 2.5M Θ with linear dimension 25.29 Km and central redshift 0.2802. It has been observed that with the increase of charge parameter K, the mass of the star also increases. For n=4,5,6,7, the charged solutions are well behaved with their neutral counterparts however, for n=1,2,3, the charged solution are well behaved but their neutral counterparts are not well behaved.  相似文献   

14.
Recently Varvoglis and Hadjidemetriou (Astrophys. Space Sci. doi:, 2012; hereafter referred to as paper VH) have raised two points concerning the model of the restricted three-body problem with variable mass presented in our paper (Zhang et al. in Astrophys. Space Sci. 337:107, 2012; hereafter referred to as paper ZZX) and made intensive investigations of this model. These points and investigations are very useful and here we provide some explanation and supplementary specification regarding the model presented in the paper ZZX.  相似文献   

15.
The present paper reports a class of new solutions of charged fluid spheres expressed by a space time with its hypersurfaces t=const. as spheroid for the case 0<K<1 with surface density 2×1014 gm/cm3. When the Buchdahl’s type fluid spheres are electrified with generalized charged intensity and it is utilized to construct a super-dense star and found that star satisfies all reality conditions except the casual condition for 0<K≤0.05. The maximum mass occupied and the corresponding radius have been obtained 8.130871 M Θ and 24.60916 km respectively. Further, the redshift at the centre and on the surface are noted by z 0=0.933729 and z a =0.383808 respectively.  相似文献   

16.
We point out here that all the solutions presented in Rahaman et al. (Astrophys. Space Sci. 331:191–197, 2011) are incorrect and do not satisfy the system of governing Einstein-Maxwell field equations.  相似文献   

17.
The paper presents a class of interior solutions of Einstein-Maxwell field equations of general relativity for a static, spherically symmetric distribution of the charged fluid. This class of solutions describes well behaved charged fluid balls. The class of solutions gives us wide range of parameter K (0.3277≤K≤0.49), for which the solution is well behaved hence, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=0.3277 with X=−0.15, the maximum mass of the star comes out to be M=0.92M Θ with radius r b ≈17.15 km and the surface red shift Z b ≈0.087187. It has been observed that under well behaved conditions this class of solutions gives us the mass of super dense object within the range of white-dwarf.  相似文献   

18.
Here the effect of rotation up to third order in the angular velocity of a star on the p, f and g modes is investigated. To do this, the third-order perturbation formalism presented by Soufi et al. (Astron. Astrophys. 334:911, 1998) and revised by Karami (Chin. J. Astron. Astrophys. 8:285, 2008), was used. I quantify by numerical calculations the effect of rotation on the oscillation frequencies of a uniformly rotating β-Cephei star with 12 M . For an equatorial velocity of 90 km s−1, it is found that the second- and third-order corrections for (l,m)=(5,−4), for instance, are of order of 0.07% of the frequency for radial order n=−3 and reaches up to 0.6% for n=−20.  相似文献   

19.
We present a well behaved class of Charge Analogue of Heintzmann (Z. Phys. 228:489, 1969) solution. This solution describes charge fluid balls with positively finite central pressure and positively finite central density ; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. The solution gives us wide range of constant K (1.25≤K≤15) for which the solution is well behaved and therefore, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degrees of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=1.25 and X=0.42, the maximum mass of the star comes out to be 3.64M Θ with linear dimension 24.31 km and central redshift 1.5316.  相似文献   

20.
After reviewing the scalar-tensor lambda-accelerating power-law solutions by Berman (Astrophys. Space Sci. 323:103, 2009a), we obtain solutions for the amplification of gravitational waves in the models. The solutions consider a perfect gas equation of state, with cosmic pressure proportional to the energy density, the proportionality constant being smaller than −2/3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号