首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show how to prove the two Pioneers Anomalies by means of the Godlowski et al. (, 2004) idea for a rotating General Relativistic Universe. The so-called clock effect is calculated.  相似文献   

2.
In a previous paper (Berman, in Astrophys. Space Sci., 2011), we showed how to prove the two Pioneers Anomalies, and now we add the fly-bys, by means of a rotating Universe. We discuss Einstein’s Machian program, which we find as being fullfilled. Godlowski et al. (Los Alamos Archives, 2003) idea for a rotating General Relativistic Universe, led us to the adopted model. Updated evidence on rotation is cited (Godlowski, in Los Alamos Archives, 2011; Ni in Phys. Rev. Lett. 107(5):051103, 2011). We conclude that a rotating and expanding Universe may be the unique solution to the apparent divergences between Einstein and Mach. This is cosmologically important.  相似文献   

3.
We discuss astronomical and astrophysical evidence, which we relate to the principle of zero-total energy of the Universe, that imply several relations among the mass M, the radius R and the angular momentum L of a “large” sphere representing a Machian Universe. By calculating the angular speed, we find a peculiar centripetal acceleration for the Universe. This is an ubiquituous property that relates one observer to any observable. It turns out that this is exactly the anomalous acceleration observed on the Pioneers spaceships. We have thus shown that this anomaly is to be considered a property of the Machian Universe. We discuss several possible arguments against our proposal.  相似文献   

4.
A statistical study is made of the long term variations of the interplanetary magnetic field parameters collected in the years 1964 to 1973 by 12 spacecraft (IMP's, Pioneers and HEOS). Although temporal fluctuations are observed on field components and magnitudes no clear solar cycle variation is found. The same conclusion holds for the statistical distributions and variances of these parameters. A search for possible heliographic latitude effects on the field also leads to a negative conclusion.  相似文献   

5.
The 850 K exospheric temperature inferred for Jupiter from the radio-occultation experiments on Pioneers 10 and 11 is shown to imply a heat input of 0.25–0.5 erg cm?2s?1. One possible source of this energy is precipitation of electrons from a warm plasma (temperature corresponding to energies of the order of 30–500 eV). A mechanism is suggested wherein the presence of this plasma can be accounted for by centrifugal acceleration and adiabatic compression of ionospheric electrons and protons. Present ideas of the source strength of ionospheric plasma, however, give heating rates that are too small by 1–2 orders of magnitude, although inferences from direct plasma measurements suggest that the required plasma is indeed present.  相似文献   

6.
All proposed gravitational explanations of the Pioneer anomaly must crucially face the Equivalence Principle. Thus, if Pioneers 10 and 11 were influenced by anomalous gravitational effects in regions containing other Solar System bodies, then those bodies should likewise be influenced, irrespective of their shape, composition or mass. Although the lack of any observed influence upon planetary orbits severely constrains such explanations, here we aim to construct by computer modeling, hypothetical gravitating annuli having no gravitational impact on planetary orbits from Mercury to Neptune. One model has a central zone, free of radial gravitation in the annular plane, and an ‘onset’ beyond Saturn’s orbit, where sunward annular gravitation increases to match the Pioneer anomaly data. Sharp nulls are included so that Uranus and Neptune escape this influence. Such models can be proportionately reduced in mass: a 1 % contribution to the anomaly requires an annulus of approximately 1 Earth mass. It is thus possible to comply with the JPL assessment of newly recovered data attributing 80 %, or more, of the anomaly to spacecraft heat, which appears to allow small contributions from other causes. Following the possibility of an increasing Kuiper belt density at great ranges, another model makes an outward small anomalous gravitation in the TNO region, tallying with an observed slight indication of such an effect, suggesting that New Horizons may slightly accelerate in this region.  相似文献   

7.
Plasma data from Pioneers 6–7 and from a variety of satellites operating near the Earth are used to investigate the heliographic latitude dependence of the solar wind bulk speed near the sunspot maximum. No evidence is found for a latitude effect: the latitudinal gradient, if any, turns out to be 2 km (sec degree)–1, to be compared with the gradient of 10 km (sec degree)–1 observed in periods of low or moderate solar activity.  相似文献   

8.
Pioneers 10 and 11 have transmitted seven images of the Galilean satellites with surface resolutions on the order of several hundred kilometers. Because the point-spread function is well determined, it has been possible to measure the radius of each of the four satellites to a precision of typically ±30 km. The method used fits a semicircle to the illuminated limb by varying the center coordinates and radius until the best-fit criteria are satisfied. Careful attention is given to locating the true edge position within the blurred image. The radius determinations and corresponding densities for the satellites are: Io (1840 ± 30, 3.41 ± 0.19), Europa (1552 ± 20, 3.06 ± 0.15), Ganymede (2650 ± 25, 1.90 ± 0.06), and Callisto (2420 ± 20, 1.81 ± 0.05), where the units are in kilometers and grams per cubic centimeters, respectively. Since three images of Callisto were received, it has been possible to substantially decrease the uncertainties of the radius and density.  相似文献   

9.
The first results of a comprehensive computer analysis of over 300 front film and grid coincidence events is presented using statistical tests on the observed data. The short term time dependence of the observed flux is entirely commensurate with a random Poisson distribution and any possible contributions from discrete “cometary showers” must certainly be of relatively minor significance compared to the sporadic background for mass > 10?13 g. Periodic seasonal variations of ~ 20 per cent of the average rate are observed common to Pioneers 8 and 9. These variations could reflect on the cometary nature of the source or alternatively indicate the presence of an interstellar component. The mass spectrum of the flux in the range 10?11?10?13 g indicates an increasing flux of particles to the lowest limits of mass detected, with a derived flux of Φ = 1·4 × 10?12m?0·68 (g) m?2 sec?1(2π ster.)?1.  相似文献   

10.
All of the data acquired at Jupiter by the Infrared Radiometers on board Pioneers 10 and 11 are presented in the form of images with geometric control. The images are compared with 5-μm and visible images taken in the same time frame. The association of dark (blue or brown) and light (white or red) areas with warm and cool areas (at 5, 20, and 45 μm) respectively, extends to nearly all features observed on the planet. Where the normal association of light and dark visible markings with the zonal velocity breaks down (e.g., at the latitude of the South Equatorial Belt during the Pioneer encounters), the infrared emission seems to follow the visible cloud structure rather than the zonal velocity structure. Exceptions to the general rule involve 20-μm radiation, which reflects conditions in the altitude range 0.1–0.3 bar. For example, a comparison between Pioneer 10 and 11 images suggests that the South Equatorial Belt became brighter at 20 μm, but remained constant at other wavelengths between the two encounters.  相似文献   

11.
A discussion of the January 28, 1967 solar flare event is presented. High energy data from several neutron monitor stations are supplemented by low energy data from the interplanetary space probes Pioneers 6 and 7. A study of the data obtained from these three observation stations widely separated in solar azimuth has shown (1) the most probable location for the responsible flare was 60 ° beyond the western solar limb, (2) other than the large emitted particle flux, the phenomena associated with the January 28 activity are not atypical of other solar flare effects, (3) both the 0.5 GeV and 7.5 MeV fluxes observed at the earth were isotropic, indicative of particle diffusion across the interplanetary magnetic field lines, (4) the spectral exponent of the differential rigidity spectrum at high energies was - 4.8 ± 0.2, and (5) there was an indication of low energy solar injection prior to the high energy event of January 28.A technique is also described for obtaining the differential rigidity spectral index for an isotropic flux as a function of the relative enhancements of any pair of neutron monitors sufficiently separated in latitude.  相似文献   

12.
Wide-angle ecliptic measurements of zodiacal light brightness (Z) and polarization (P) lead to fundamental results about optical properties of interplanetary scatterers, under a few reasonable assumptions (that they depend upon heliocentric distance by a r?n law, and suffer no significant distortion of their scattering indicatrix between 0.5 and 2 a.u.): 1. The phase function σ(θ) is expressed (Equation 6) as a function of n and of (Z) data. 2. At the elongation ? = 90°, the derivative dZd? yields an absolute determination of the intensity T scattered at right angles from the Sun by a single unit-volume of interplanetary medium (Equation 7). 3. The polarization degree P(θ) of the sunlight scattered by a single volume is derived (Equation 12) from n and from (Z + P) data. For two special values of the scattering angle θ, n vanishes in Equation (12), so that a fair knowledge of the polarization curve (Fig. 2) is reached prior to any assumption, or any forthcoming Jupiter-probe measure, about the value of n.Should n be provided by the Pioneers, then a thorough treatment of the whole problem of phase function and polarization curve can be performed by means of Equations (6) and (12) supplied with available zodiacal light photopolarimetric observations.  相似文献   

13.
We introduce a method for constructing large-scale (0.25 AU) interplanetary magnetic field lines using only solar wind velocity from well-separated appropriately located spacecraft. The technique is based on labeling the field lines at each spacecraft with their coronal connection longitudes calculated in the EQRH (extrapolated quasi-radial hypervelocity) approximation (Nolte and Roelof, 1973). Even though the EQRH approximation is most applicable to quasi-steady solar wind, we propose that it should also be satisfactorily accurate for moderately evolving conditions. For strongly evolving conditions (e.g., flare-associated plasma) we propose a straightforward correction based on the inferred coronal longitudinal velocity profile. To illustrate the multispacecraft EQRH technique, we perform a calculation in which the interplanetary field lines in a model evolving solar wind disturbance are deduced from model observations at separated spacecraft. Since the expected agreement is found, we use data from Pioneers 8 and 9 and Vela to construct field lines for an unusually quiet period (April 26–30, 1969) and for a flare-associated disturbance accompanied by a Forbush decrease (March 23–25, 1969). The deduced field lines (even though strongly distorted by the disturbance), order the onsets of the Forbush decrease at the separated spacecraft, and the interplanetary plasma and field structures correspond to equatorial structures apparent in H synoptic charts of chromospheric magnetic features.  相似文献   

14.
We use particle simulations to study the motion of gas in galaxy models with mildly non-axisymmetric dark matter haloes with nearly constant density cores. In particular the effect of varying the dissipation rate is studied. We find that even very weak dissipation may cause inflow of material within the core radius towards the centre, and thus lead to the formation of a central mass concentration. Typically, a total of 108 M solar masses are accreted inside the central 100 pc in a few Gyr. This, in turn, destabilizes the trajectories in the central region. It is suggested that these processes may lead to the formation of bulge-like structures from discs, the extent of which will depend on the halo core radius and initial asymmetry. This and other possible consequences are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study ion-acoustic solitary waves in a fully relativistic ion-electron-positron plasma. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. Our results may be relevant to cosmic relativistic double- layers and relativistic plasma structures involving energetic plasma flows that may occur in space plasmas. Furthermore, they may complement and provide new insights into recently published results (G. Lu et al. in Astrophys. Space Sci., doi:, 2010).  相似文献   

16.
This paper presents two and three dimensional simulations of the interaction of shocks with media with large numbers of dense inclusions. An approximate model of the interaction of a starburst wind with the surrounding galactic ISM illustrates issues which must be addressed in global models of ISM dynamics. As a step towards developing the sub-grid model of multiphase turbulence, we define and study a form of ‘multiphase Riemann problem’. This allows us to develop macroscopic characteristics of the flows which may be compared to such subgrid models.  相似文献   

17.
Neutral air winds blowing across the magnetic field cause a slow transverse drift of the positive ions, perpendicular to both the winds and the magnetic field. This drift sets up an electric polarization field which can only be neutralized by currents flowing along magnetic field lines and through the E-layer. But at night the E-layer conductivity may be too small to close this circuit, so that polarization fields build up in the F-layer, causing the plasma to drift with the wind. This polarization effect may influence the behaviour of the nighttime equatorial F-layer and contribute to ‘superrotation’ of the atmosphere.  相似文献   

18.
The chemical composition of the Milky-Way halo is studied on the basis of a sample of metal-poor (logarithmic metallicity less than –1) globular clusters. The histogram obtained may be interpreted in the terms of the classical galaxy formation theory of Eggen, Lynden-Bell and Sandage. Interestingly enough, this is in a rough agreement with the data on metallicity of high-redshift damped Ly-alpha and Ly-alpha forest systems. This may serve the important purpose of constraining the nature and the formation timescale of MACHOs discovered through gravitational microlensing experiments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Diffractive and refractive magnetospheric scintillations may allow direct probing of the plasma inside the pulsar light cylinder. The unusual electrodynamics of the strongly magnetized electron-positron plasma allows separation of the magnetospheric and interstellar scattering. The most distinctive feature of the magnetospheric scintillations is their independence of frequency. Diffractive scattering due to small scale inhomogeneities produces a scattering angle that may be as large as 0.1radians, and a typical decorrelation time of 10-8 seconds. Refractive scattering due to large scale inhomogeneities is also possible, with atypical angle of 10-3 radians and a correlation time of the order of10-4 seconds. Some of the magnetospheric propagation effects may have already been observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The study of celestial (natural) maser-laser environment has not yet been well connected with nonlinear optics; many nonlinear optical processes and effects have been (fundamentally) neglected. It is now proposed in this Letter that nonlinear optics can (and should) actively be introduced to the study of the celestial maser-laser environment, with some modifications upon consideration of the difference of environments. This Letter provides a theoretical basis for this new approach. This is very significant to the study of celestial maser-laser environment, and may be significant to nonlinear optics as well; this may also produce an interplay between the two fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号