首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A zoom‐in at the center of the closest globular cluster M4 with a circle of a 200‐pixel radius (see L.R. Bedin et al., this issue, p. 1062). (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The I‐band light curve of the transit candidate, taken with CAFOS (Carlar Alto 2.2 m telescope). See R. Errmann et al., this issue, p. 345. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Magnetic map of a sunspot obtained with the Tenerife In‐frared Polarimeter at the German Vacuum Tower Telescope (see R.E. Louis et al., this issue, p. 161). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Halo display with circle and cross by Norbert Rosing/National Geographic Creative (see D.L. Neuhäuser and R. Neuhäuser, this issue, p. 913). (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Ks images of Gl 29 from 2MASS and IRIS. Both images cover the same area (see R. Chini, this issue, p. 621) (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Digitized drawing of the Sun of 1847 Apr 14 observed in Dessau by Samuel Heinrich Schwabe who discovered 1844 the solar activity cycle (see R. Arlt, this issue, p. 805) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Total view of the closed GREGOR dome on top of the tower located at the Observatorio del Teide on Tenerife (see R.H. Hammerschlag et al., this issue, p. 830) (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The sunspot drawing by Peter Becker for 1709 January 5–7 and just one of the two spots was left on January 8 (see R. Neuhäuser et al., this issue, p. 623). (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Preliminary transit lightcurve with data from several telescopes from the 2010 YETI campaign. Data from Jena are shown as red and green diamonds (see R. Neuhaeuser et al., this issue, p. 557) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Abstract— A database of magnetic susceptibility (χ) measurements on different non‐ordinary chondrites (C, E, R, and ungrouped) populations is presented and compared to our previous similar work on ordinary chondrites. It provides an exhaustive study of the amount of iron‐nickel magnetic phases (essentially metal and magnetite) in these meteorites. In contrast with all the other classes, CM and CV show a wide range of magnetic mineral content, with a two orders of magnitude variation of χ. Whether this is due to primary parent body differences, metamorphism or alteration, remains unclear. C3–4 and C2 yield similar χ values to the ones shown by CK and CM, respectively. By order of increasing χ, the classes with well‐grouped χ are: R << CO < CK ≈ CI < Kak < CR < E ≈ CH < CB. Based on magnetism, EH and EL classes have indistinguishable metal content. Outliers that we suggest may need to have their classifications reconsidered are Acfer 202 (CO), Elephant Moraine (EET) 96026 (C4–5), Meteorite Hills (MET) 01149, and Northwest Africa (NWA) 521 (CK), Asuka (A)‐88198, LaPaz Icefield (LAP) 031156, and Sahara 98248 (R). χ values can also be used to define affinities of ungrouped chondrites, and propose pairing, particularly in the case of CM and CV meteorites.  相似文献   

11.
The detector plane of the prototype of a global soft X‐ray imaging instrument for heliophysics, planetary science, and astrophysics (see M.R. Collier et al., this issue, p. 378)  相似文献   

12.
Abstract— Rumuruti (R) chondrites constitute a new, well‐established chondrite group different from the carbonaceous, ordinary, and enstatite chondrites. Many of these samples are gas‐rich regolith breccias showing the typical light‐dark structure and consist of abundant fragments of various parent‐body lithologies embedded in a fine‐grained olivine‐rich matrix. Unequilibrated type‐3 lithologies among these fragments have frequently been mentioned in various publications. In this study, detailed mineralogical data on seven primitive fragments from the R‐chondrites Dar al Gani 013 and Hughes 030 are presented. The fragments range from ~300 μ in size up to several millimeters. Generally, the main characteristics can be summarized as follows: (1) Unequilibrated type‐3 fragments have a well‐preserved chondritic texture with a chondrule‐to‐matrix ratio of ~1:1. Chondrules and chondrule fragments are embedded in a fine‐grained olivine‐rich matrix. Thus, the texture is quite similar to that of type‐3 carbonaceous chondrites. (2) In all cases, matrix olivines in type‐3 fragments have a significantly higher Fa content (44–57 mol%) than olivines in other (equilibrated) lithologies (38–40 mol% Fa). (3) Olivines and pyroxenes occurring within chondrules or as fragments are highly variable in composition (Fa0–65 and Fs0–33, respectively) and, generally, more magnesian than those found in equilibrated R chondrites. Agglomerated material of the R‐chondrite parent body (or bodies) was highly unequilibrated. It is suggested that the material that accreted to form the parent body consisted of chondrules and chondrule fragments, mainly having Mg‐rich silicate constituents, and Fe‐rich highly oxidized fine‐grained materials. The dominating phase of this fine‐grained material may have been Fa‐rich olivine from the beginning. The brecciated whole rocks, the R‐chondrite regolith breccias, were not significantly reheated subsequent to brecciation or during lithification, as indicated by negligible degree of equilibration between matrix components and Mg‐rich olivines and pyroxenes in primitive type‐3 fragments.  相似文献   

13.
Abstract— The measurements of magnesium and potassium isotopic compositions of refractory minerals in Allende calcium‐aluminum‐rich inclusions (CAIs), 7R‐19–1, HN3–1, and EGG3 were taken by secondary ion mass spectrometry (SIMS). The 7R‐19–1 contains 16O‐rich and 16O‐poor melilite grains and define a single isochron corresponding to an initial 26Al/27Al ratio of (6.6 ± 1.3) × 10?5. The Al‐Mg isochron, O isotope measurements and petrography of melilite in 7R‐19–1 indicate that 16O‐poor melilite crystallized within 0.4 Myr after crystallization of 16O‐rich melilite, suggesting that oxygen isotopic composition of the CAI‐forming region changed from 16O‐rich to 16O‐poor within this time interval. The 16O‐poor melilite is highly depleted in K compared to the adjacent 16O‐rich melilite, indicating evaporation during remelting of 7R‐19–1. We determined the isochron for 41Ca‐41K isotopic systematics in EGG3 pyroxene with (4.1 ± 2.0) × 10?9 (2s?) as an initial ratio of 41Ca/40Ca, which is at least two times smaller than the previous result (Sahijipal et al. 2000). The ratio of 41Ca/40Ca in the EGG3 pyroxene grain agrees within error with the value obtained by Hutcheon et al. (1984). No evidence for the presence of 41K excess (decay product of a short‐lived radionuclide 41Ca) was found in 7R‐19–1 and HN3–1. We infer that the CAI had at least an order of magnitude lower than canonical 41Ca/40Ca ratio at the time of the CAI formation.  相似文献   

14.
We present and discuss V BLUW photometry of eleven massive stars in the Magellanic Clouds: the SMC stars AzV121, AzV136 = HD5277 = R10, AzV197, AzV310 = R26 and AzV 369; the LMC stars GV80 = HD32034 = R62, GV91 = HDE 268 819, GV346 = HDE 269661 = R111, GV352 = HDE 269697, GV423 = HDE 269953 = R150 and GV460 = HDE 270111. Only one G0 Ia SMC supergiant is found to be variable, whereas all members of the LMC sample show definite variability. We find that roughly above M /M = 25, supergiants become photometrically unstable. The reddening‐independent metal‐index [BL ] is used to investigate the metallicity of the late‐type supergiants in both galaxies relative to similar supergiants in the solar neighbourhood. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Abstract— We present a new weathering index (wi) for the metallic‐Fe‐Ni‐poor chondrite groups (CK and R) based mainly on transmitted light observations of the modal abundance of crystalline material that is stained brown in thin sections: wi‐0, <5 vol%; wi‐1, 5–25 vol%; wi‐2, 25–50 vol%; wi‐3, 50–75 vol%; wi‐4, 75–95 vol%; wi‐5, >95 vol%; wi‐6, significant replacement of mafic silicates by phyllosilicates. Brown staining reflects mobilization of oxidized iron derived mainly from terrestrial weathering of Ni‐bearing sulfide. With increasing degrees of terrestrial weathering of CK and R chondrites, the sulfide modal abundance decreases, and S, Se, and Ni become increasingly depleted. In addition, bulk Cl increases in Antarctic CK chondrites, probably due to contamination from airborne sea mist.  相似文献   

16.
Abstract— Rumuruti chondrites (R chondrites) constitute a well‐characterized chondrite group different from carbonaceous, ordinary, and enstatite chondrites. Many of these meteorites are breccias containing primitive type 3 fragments as well as fragments of higher petrologic type. Ca,Al‐rich inclusions (CAIs) occur within all lithologies. Here, we present the results of our search for and analysis of Al‐rich objects in Rumuruti chondrites. We studied 20 R chondrites and found 126 Ca,Al‐rich objects (101 CAIs, 19 Al‐rich chondrules, and 6 spinel‐rich fragments). Based on mineralogical characterization and analysis by SEM and electron microprobe, the inclusions can be grouped into six different types: (1) simple concentric spinel‐rich inclusions (42), (2) fassaite‐rich spherules, (3) complex spinel‐rich CAIs (53), (4) complex diopside‐rich inclusions, (5) Al‐rich chondrules, and (6) Al‐rich (spinel‐rich) fragments. The simple concentric and complex spinel‐rich CAIs have abundant spinel and, based on the presence or absence of different major phases (fassaite, hibonite, Na,Al‐(Cl)‐rich alteration products), can be subdivided into several subgroups. Although there are some similarities between CAIs from R chondrites and inclusions from other chondrite groups with respect to their mineral assemblages, abundance, and size, the overall assemblage of CAIs is distinct to the R‐chondrite group. Some Ca,Al‐rich inclusions appear to be primitive (e.g., low FeO‐contents in spinel, low abundances of Na,Al‐(Cl)‐rich alteration products; abundant perovskite), whereas others were highly altered by nebular and/or parent body processes (e.g., high concentrations of FeO and ZnO in spinel, ilmenite instead of perovskite, abundant Na,Al‐(Cl)‐rich alteration products). There is complete absence of grossite and melilite, which are common in CAIs from most other groups. CAIs from equilibrated R‐chondrite lithologies have abundant secondary Ab‐rich plagioclase (oligoclase) and differ from those in unequilibrated type 3 lithologies which have nepheline and sodalite instead.  相似文献   

17.
Ancient, SiO2‐rich achondrites have previously been proposed to have formed by disequilibrium partial melting of chondrites. Here, we test the alternative hypothesis that these achondrites formed by fractional crystallization of impact melts of Rumuruti (R) chondrites. We identified two new melt clasts in R chondrites, one in Pecora Escarpment (PCA) 91241 and one in LaPaz Icefield (LAP) 031275. We analyzed major, minor, and trace element concentrations, as well as oxygen isotopes, of these two clasts and a third one that had been previously recognized (Bischoff et al. 2011) as an impact melt in Dar al Gani (DaG) 013. The melt clast in PCA 91241 is an R chondrite impact melt closely resembling the one previously recognized in DaG 013. The melt clast in LAP 031275 has an L chondrite provenance. We show that SiO2‐rich melts could form from the mesostases of R chondrite impact melts. However, their CI‐normalized rare earth element patterns are flat, whereas those of ancient SiO2‐rich achondrites (Day et al. 2012; Srinivasan et al. 2018) and those of disequilibrium partial melts of chondrites (Feldstein et al. 2001) have positive Eu anomalies from preferential melting of plagioclase. Thus, we conclude that ancient SiO2‐rich achondrites were probably formed by disequilibrium partial melting (due to an internal heat source on their parent bodies), rather than from impact melts.  相似文献   

18.
Abstract— This study presents the first determinations of 39Ar‐40Ar ages of R chondrites for the purpose of understanding the thermal history of the R chondrite parent body. The 39Ar‐40Ar ages were determined on whole‐rock samples of four R chondrites: Carlisle Lakes, Rumuruti, Acfer 217, and Pecora Escarpment #91002 (PCA 91002). All samples are breccias except for Carlisle Lakes. The age spectra are complicated by recoil and diffusive loss to various extents. The peak 39Ar‐40Ar ages of the four chondrites are 4.35, ?4.47 ± 0.02, 4.30 ± 0.07 Ga, and 4.37 Ga, respectively. These ages are similar to Ar‐Ar ages of relatively unshocked ordinary chondrites (4.52–4.38 Ga) and are older than Ar‐Ar ages of most shocked ordinary chondrites («4.2 Ga). Because the meteorites with the oldest (Rumuruti, ?4.47 Ga) and the youngest (Acfer 217, ?4.30 Ga) ages are both breccias, these ages probably do not record slow cooling within an undisrupted asteroidal parent body. Instead, the process of breccia formation may have differentially reset the ages of the constituent material, or the differences in their age spectra may arise from mixtures of material that had different ages. Two end‐member type situations may be envisioned to explain the age range observed in the R chondrites. The first is if the impact(s) that reset the ages of Acfer 217 and Rumuruti was very early. In this case, the ?170 Ma maximum age difference between these meteorites may have been produced by much deeper burial of Acfer 217 than Rumuruti within an impact‐induced thick regolith layer, or within a rubble pile type parent body following parent body re‐assembly. The second, preferred scenario is if the impact that reset the age of Acfer 217 was much later than that which reset Rumuruti, then Acfer 217 may have cooled more rapidly within a much thinner regolith layer. In either scenario, the oldest age obtained here, from Rumuruti, provides evidence for relatively early (?4.47 Ga) impact events and breccia formation on the R chondrite parent body.  相似文献   

19.
The Mars Exploration Rover Spirit investigated the igneous and alteration mineralogy and chemistry of Home Plate and its surrounding deposits. Here, we focus on using thermochemical modeling to understand the secondary alteration mineralogy at the Home Plate outcrop and surrounding Columbia Hills region in Gusev crater. At high temperatures (300 °C), magnetite occurs at very high W/R ratios, but the alteration assemblage is dominated by chlorite and serpentine over most of the W/R range. Quartz, epidote, and typical high‐T phases such as feldspar, pyroxene, and garnet occur at low W/R. At epithermal temperatures (150 °C), hematite occurs at very high W/R. A range of phyllosilicates, including kaolinite, nontronite, chlorite, and serpentine are precipitated at specific W/R. Amphibole, with garnet, feldspar, and pyroxene occur at low W/R. If the CO2 content of the system is high, the assemblage is dominated by carbonate with increasing amounts of an SiO2‐phase, kaolinite, carpholite, and chlorite with lower W/R. At temperatures of hydrous weathering (13 °C), the oxide phase is goethite, silicates are chlorite, nontronite, and talc, plus an SiO2‐phase. In the presence of CO2, the mineral assemblage at high W/R remains the same, and only at low W/R, i.e., with increasing salinity, carbonate precipitates. The geochemical gradients observed at Home Plate are attributed to short‐lived, initially high (300 °C) temperature, but fast cooling events, which are in agreement with our models and our interpretation of a multistage alteration scenario of Home Plate and Gusev in general. Alteration at various temperatures and during different geological processes within Gusev crater has two effects, both of which increase the habitability of the local environment: precipitation of hydrous sheet silicates, and formation of a brine, which might contain elements essential for life in diluted, easily accessible form.  相似文献   

20.
Dhofar 1671 is a relatively new meteorite that previous studies suggest belongs to the Rumuruti chondrite class. Major and REE compositions are generally in agreement with average values of the R chondrites (RCs). Moderately volatile elements such as Se and Zn abundances are lower than the R chondrite values that are similar to those in ordinary chondrites (OCs). Porphyritic olivine pyroxene (POP), radial pyroxene (RP), and barred olivine (BO) chondrules are embedded in a proportionately equal volume of matrix, one of the characteristic features of RCs. Microprobe analyses demonstrate compositional zoning in chondrule and matrix olivines showing Fa‐poor interior and Fa‐rich outer zones. Precise oxygen isotope data for chondrules and matrix obtained by laser‐assisted fluorination show a genetic isotopic relationship between OCs and RCs. On the basis of our data, we propose a strong affinity between these groups and suggest that OC chondrule precursors could have interacted with a 17O‐rich matrix to form RC chondrules (i.e., ?17O shifts from ~1‰ to ~3‰). These interactions could have occurred at the same time as “exotic” clasts in brecciated samples formed such as NWA 10214 (LL3–6), Parnallee (LL3), PCA91241 (R3.8–6), and Dhofar 1671 (R3.6). We also infer that the source of the oxidation and 17O enrichment is the matrix, which may have been enriched in 17O‐rich water. The abundance of matrix in RCs relative to OCs, ensured that these rocks would be apparently more oxidized and appreciably 17O‐enriched. In situ analysis of Dhofar 1671 is recommended to further strengthen the link between OCs and RCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号